
scala world 22 Sep 2015

Principles for
approachable, modular,

functional libraries
Erik Osheim (@d6)

scala world 22 Sep 2015

Heuristics for
approachable, modular,

functional libraries
Erik Osheim (@d6)

who am i?
• typelevel member λ
• maintain spire, cats, and several other scala libraries

• interested in expressiveness and performance ☯

• hack scala code at meetup

code at http://github.com/non

what is this talk about?
We've been writing FP in Scala for awhile. We have:

• Functional Programming in Scala ("the red book")

• Businesses powered by FP

• Libraries to support FP

• Many many blog posts

• Smart people happy to talk about FP on Gitter/IRC/etc.

• Lots of gists, examples, and proofs-of-concept

what is this talk about?
Usually our talks are designed for outreach.

• Education - introducing new FP concepts

• Evangelism - advocacy, debate, high-level analysis

• Encouragement - success stories, positive reinforcement

These are all important!

what is this talk about?
But there are difficulties.
• "map is not a member of F[A]"

• StackOverflowException

• <snarky comment about the "cinnabon" operator>

• 232.188: [Full GC

• SI-2712

In response, our libraries continue to evolve and adapt.

what is this talk about?
heuristic, /ˌhjʊ(ə)ˈrɪstɪk/
"In psychology, heuristics are simple, efficient rules, learned or
hard-coded by evolutionary processes..." [1]
[1] https://en.wikipedia.org/wiki/Heuristic

Our libraries and the Scala language are co-evolving.

what is this talk about?
This talk is focused on encoding FP concepts in Scala.

Cats is used as a case study.
But these ideas apply to your libraries as well.

This is a hard problem.

cats
CATS

cats
CATS
Category-theoretic Algorithms and Tools for Scala?

cats
CATS
Category-theoretic Algorithms and Tools for Scala?

(No.)

cats
Lightweight, modular, and extensible
library for functional programming.

• Created 28 Jan 2015

• 45 contributors

• 174 issues

• 363 pull requests

• 1174 commits

AUTHORS.md
Alissa Pajer Erik Osheim Owen Parry
Alistair Johnson Eugene Burmako Pascal Voitot
Amir Mohammad Saied Eugene Yokota Philip Wills
Andrew Jones Feynman Liang Rintcius
Arya Irani Frank S. Thomas Rob Norris
Benjamin Thuillier Jisoo Park Romain Ruetschi
Bobby Josh Marcus Ross A. Baker
Brendan McAdams Julien Richard-Foy Sinisa Louc
Cody Allen Julien Truffaut Stephen Judkins
Colt Frederickson Kenji Yoshida Stew O'Connor
Dale Wijnand Luis Angel Vicente Sanchez Travis Brown
Dave Rostron Marc Siegel Wedens
David Allsopp Michael Pilquist Yosef Fertel
Derek Wickern Mike Curry Zach Abbott

goals
1. Functional
2. Safe
3. Fast
4. Documented
5. Modular
6. Idiomatic
7. Pragmatic
8. Collaborative
9. Welcoming

goals
Too many goals?

☁
Really, there is only one:

"Remove barriers to doing functional programming in Scala."

☀
That's it.

background

my own journey
My claim is that we are still learning how to do this.

(Or at last I am.)

I started learning Scala in August 2011.
My experience comes primarily from working on Spire.

spire
• 3 Nov 2011 - first Spire commit

• 15 Jan 2012 - add benchmarks

• 25 Jul 2012 - name-based ops-macros (i.e. machinist)

• 22 Jan 2013 - use discipline, publish laws

• 19 Feb 2015 - add scoverage plugin

• 20 May 2015 - add scalastyle plugin

• 24 Jul 2015 - scala.js support

spire
Summary:
• A journey of almost 4 years.

• Some practices adopted very early (e.g. benchmarking)

• Others much later (e.g. code coverage)

• Major changes within the last few months.

• Many more changes on the horizon.

spire
Things we learned:
• Seemingly-insignificant costs will add up.

• If you care about performance, benchmark.

• Property-based testing is amazing; export your laws!

• If you care about testing, measure code coverage.

• .equals, any2stringadd, etc. are evil.

• @specialized is fragile, so design for it up-front.

spire
Setbacks/mistakes:
• Monolithic project

• Purpose of types/type classes not always apparent

• Lack of high-quality documentation

• Somewhat difficult to get involved

• Small (but dedicated) team

spire
Future plans:
• Modularize via algebra, spire-extras

• Improve internal documentation

• Tutorials and more examples

• Outreach and blogging

• Better JS support

barriers

barriers
Cats aims to remove barriers preventing people from doing
functional programming in Scala.

⚠
What are those barriers?

technical barriers
What are they?
1. Type classes not first class in Scala

2. Standard Library exists

3. Hotspot not designed for optimizing FP code

4. Huge language surface area, many possible encodings

5. Impedance mismatches with ML, Haskell, etc.

6. Complexity

technical barriers
How to overcome them?

1. Build-your-own-runtime

2. Canonical encodings and aggressive subsetting

3. Opinionated style guidelines/style-checking

4. Benchmarking and testing

5. Macros, compiler plugins, and dark magic

6. Willingness to break new ground

barriers at work
What are they?
1. Perceptions of difficulty

2. Performance concerns

3. Stability concerns

4. Unfamiliar types, syntax, etc.

5. "Scarcity" of experience functional programmers

6. Fear of the Unknown

barriers at work
How to overcome them?

1. Tutorials and examples (which work!)

2. Documentation, tests, benchmarks, and profiling

3. Stand firm on important principles

4. Compromise on incidental details

5. Accept responsibility for education

6. Provide high-quality libraries

social barriers
What are they?
1. Perception of cliques

2. Imposter syndrome and delayed feelings of mastery

3. Powerful-but-confusing libraries

4. Wealth of alternatives

5. Concerns about harassment/bad behavior

6. "This is not for me"

social barriers
How to overcome them?

1. Model good technical and social practices

2. Reach out and welcome newcomers

3. Acknowledge the limits of our own knowledge

4. Provide opportunities for new work

5. Accept responsibility for education and codes of conduct

6. Foster a stable, long-term, supportive community

barriers tl;dr
We should:

• Be willing to break new ground, and

• Provide high-quality libraries, to

• Foster a stable, long-term, supportive community

goals
1. Functional λ
2. Safe �
3. Fast ⛧
4. Documented ⚿
5. Modular ⚙
6. Idiomatic ⛗
7. Pragmatic ⚖
8. Collaborative ⚛
9. Welcoming ☀

functional λ
1. Use type classes for open interfaces

2. Encourage/require laws for type classes/data types

3. Encourage/require referential transparency (i.e. purity)

4. First-class laziness support

5. Encourage composition

6. Support abstraction, minimize duplication (DRY)

7. Watch other libraries, languages, and researchers

safe �
1. Stack-safe by default

2. Express partiality with values not exceptions

3. Minimize allocations where possible

4. Property-based testing

5. Aim for 100% test coverage

6. Benchmarking and "real world" tests

fast ⛧
1. Avoid ineffecient default implementations

2. Do benchmarking and profiling to measure behavior

3. Perform manual/mechanical optimizations if possible

4. Design "low-level" abstractions with performance in mind

5. Make common syntax/usage efficient

documented ⚿
1. Require Type-checked tutorials and documentation

2. Require ScalaDoc on methods/classes

3. Create documents for users, contributors, maintainers.

4. Err on the side of more prose rather than less.

5. Link to the literature where possible.

6. Major design discussions should occur on Github/Gitter.

modular ⚙
1. Platform independent by default (cats.jvm/cats.js)

2. Non-monolithic, limited scope

3. Extensible, extensibility hooks

4. Publish laws and test-hooks for third-parties

5. Move small, useful utilities to standalone projects

6. Use / support other libraries

idiomatic ⛗
1. Explicitly mark/differentiate type classes

2. Minimize boilerplate where possible

3. Support built-in Scala types by default

4. Discuss and enforce common coding conventions

5. Consider and standardize on language extensions

pragmatic ⚖
1. Projects may "dial-in" their strictness (e.g. alleycats)

2. Allow specific, thoughtful exceptions (e.g. Double)

3. Aggressively listen to and respond to "pain points"

4. Willing to specialize the critical path

5. All features should have concrete motivating examples

collaborative ⚛
1. Give many people authority (11 maintainers)

2. Provide quick feedback on issues and PRs

3. Require 2 sign-offs on PR merging

4. Encourage discussion on issues/PRs

5. Leave opportunities for newcomers when possible

welcoming ☀
1. Be clear on expectations around conduct

2. Try to model productive and helpful behavior

3. Work to aim documentation towards newcomers

4. Reach out to the wider programming community

unsolved problems

unsolved problems
1. Project governance model

2. Type class inheritance inhibits modularity

3. Importing/masking implicits across multiple projects

4. Unknown unknowns

unsolved problems
"Project governance model"

• Ratifying new maintainers

• Beyond consensus decision-making

• Other formal processes

unsolved problems
"Type class inheritance inhibits modularity"

• Hard to add "earlier/looser" type classes

• Interacts poorly with limited scope/non-monoliths

unsolved problems
"Importing/masking implicits across multiple projects"

• Implicit scope is fraught

• Bulk imports are nice (but break modularity)

• Fine-grained imports are too fiddly

unsolved problems
In addition to the things I know are unsolved problems, there
are likely problems I don't even know about:

• What do you think?

• What are we overlooking?

evolution

evolutionary projects
• kind-projector - type lambda syntax support

• simulacrum - type class annotations/codegen

• machinist - faster implicit ops classes

• catalysts - tools for platform independence (js/jvm)

• export-hook - pluggable type class derivation

• imp - quickly summon implicit instances

related projects

related projects
One goal of modularity is leaving room for other projects.
 (Flotilla of boats) > (one gigantic ship)

related projects
These projects interoperate with Cats:
 * Algebra generic abstract algebra
 * Alleycats outlaw type classes / instances
 * Kittens derived type class instances
 * Dogs data structures for pure FP
 * Circe pure functional JSON (argonaut port)
 * (Monocle) optics and lenses
 * ((Spire)) fast, precise, generic numerics
 * (((FS2))) next generation of scalaz-stream

(Parens are for possible future support.)

recommendations
So you want to create an FP library in Scala?

Great!
☎
As you have seen, I have Opinions™.

recommendations
Here's a list of concrete recommendations.

Most of these have been used in Cats.

Many of them are works-in-progress.

Good luck!

recommendations
Use SBT with (at least) the following subprojects:

• core - the stuff your users need

• laws - laws/tests they need to test their code

• tests - run your tests, use your laws

• docs - compile and publish docs

• benchmark - run performance tests

(core and laws would be published as .jar files.)

recommendations
Support Javascript.

There is a ton of energy around scala-js [1].

The potential to grow our community this way is HUGE!

�
(Thanks to Alistair Johnson for opening my eyes.)

[1] http://www.scala-js.org/

recommendations
Platform independence can actually help our design:

• Avoid baking-in ugly JVM cruft

• Avoid blocking APIs

• Avoid pattern-matching on JVM types

• FP in Scala is a great model for JS

Easier to get this right "up front" rather than retrofitting things
into the design (although retrofitting can be done).

recommendations
You should do property-based testing.

• laws should depend on a library for property-based testing

• laws should export laws (properties) to be tested

• laws should export generators for interesting data types

(laws is seprate to minimize core dependencies.)

recommendations
You can use scalacheck [1] to do property-based testing.

There's also scalaprops [2], an excellent new library.

⛓

[1] http://github.com/rickynils/scalacheck
[2] https://github.com/scalaprops/scalaprops

recommendations
You can use discipline [1] to define your laws.

The previously-mentioned scalaprops [2] can also do this.

Both libraries help you to avoid unnecessary test duplication.

⛨

[1] https://github.com/typelevel/discipline
[2] https://github.com/scalaprops/scalaprops

recommendations
When possible, defer equality checks in your laws.

This restriction makes them more powerful.

�

e.g. We can try to falsify that two (A => A) instances are equal.

recommendations
case class IsEq[A](x: A, y: A)

trait FunctorLaws[F[_]] {
 implicit override def F: Functor[F]

 def id[A](fa: F[A]): IsEq[F[A]] =
 fa.map(identity) <-> fa

 def comp[A, B, C](fa: F[A], f: A => B, g: B => C): IsEq[F[C]] =
 fa.map(f).map(g) <-> fa.map(f andThen g)
 }
}

recommendations
Measure test coverage.

You can set up sbt-scoverage [1] to do this.

☐ ☑ ☒
You can also look into setting up codecov.io [2].

[1] https://github.com/scoverage/sbt-scoverage
[2] https://codecov.io/github/non/cats?branch=master

recommendations
You should create beautiful, type-checked tutorials.

• docs aggregates all your projects

• docs should type-check your documenation

• docs might publish your docs too!

recommendations
You should use tut [1] to type-check Markdown files.

• Prevents broken docs post-refactor

• Ensures all the imports are included (!)

• Provide narrative, long-form documentation

• Real world examples

☥

[1] https://github.com/tpolecat/tut

recommendations
You should also created unified docs across your subprojects.

You can use sbt-unidoc [1] to do this.

☝
[1] https://github.com/sbt/sbt-unidoc

recommendations
You should consider setting up publishing from SBT.

♧
If you use Github pages, you can use both:

• sbt-ghpages - https://github.com/sbt/sbt-ghpages

• sbt-site - https://github.com/sbt/sbt-site

recommendations
You should benchmark your code.

• Get a ballpark idea of performance

• Ensure that design satisfies requirements

• Track relative effect of changes

recommendations
You should use sbt-jmh [1] to do this.

You could also use scalameter [2], thyme [3], caliper [4], etc.

(You almost certainly should not hand-code benchmarks.)

♨
[1] https://github.com/ktoso/sbt-jmh
[2] https://scalameter.github.io/
[3] <unpublished>
[4] <semi-unpublished>

recommendations
You should use scalastyle [1] to help enforce consistency.

In order to effectively create convention (and subset the Scala
language) we need consistency.

(See also wart-remover, abide, etc.)

✂

[1] http://www.scalastyle.org/

(In retrospect I should
have created an sbt-

plugin.)

recommendations
You should create a code of conduct for your project.

Cats (and many other projects) use the Typelevel CoC [1].

�

[1] http://typelevel.org/conduct.html

recommendations
Try to limit the scope of your project.

Encourage others to create their own projects/modules, and
work to help them interoperate.

✍

(This is a great response to large feature requests.)

recommendations
Use a sign-off process, even if it starts as a rubber stamp.

Shows potential contributors what to expect.

✌

(It also helps establish good habits amongst maintainers.)

recommendations
Try to respond to questions, issues, PRs, in a timely manner.

(This can be hard.)
• In exchange for time/encouragement up front

• Author of a tiny bug fix may become prolific contributor

• (Or even a co-maintainer)

• This will ultimately save you tons of time

recommendations
Try to set a friendly, encouraging tone for discussion.

• Everyone is trying to learn more

• People will make mistakes (including you!)

• Corrections should be clear but non-hostile

• Not a place to compete for "alpha nerd" dominance

Internet communication is hard.

Be conservative in what you say, but liberal in what you accept.

recommendations
Obviously these are just recommendations.

We all have limited time/energy.
There will be trade-offs and no one is perfect.

But I think these are all worth striving for.

appendices

simulacrum
Type classes aren't a first class concept in Scala.

We recognize type class encodings.

1. Requires practice

2. Encodings differ

3. Type classes, members, instances, Ops, oh my!

4. Difficult for newcomers

5. No bread crumbs

simulacrum
Use an annotation to signal a trait is a type class.

You can write:
 import simulacrum._
 @typeclass trait Semigroup[A] {
 @op("|+|") def append(x: A, y: A): A
 }

...which expands into...

simulacrum
trait Semigroup[A] {
 def append(x: A, y: A): A
}

object Semigroup {
 def apply[A](implicit instance: Semigroup[A]): Semigroup[A] = instance

 trait Ops[A] {
 def typeClassInstance: Semigroup[A]
 def self: A
 def |+|(y: A): A = typeClassInstance.append(self, y)
 }

 trait ToSemigroupOps {
 implicit def toSemigroupOps[A](target: A)(implicit tc: Semigroup[A]): Ops[A] = new Ops[A] {
 val self = target
 val typeClassInstance = tc
 }
 }

 trait AllOps[A] extends Ops[A] {
 def typeClassInstance: Semigroup[A]
 }

 object ops {
 implicit def toAllSemigroupOps[A](target: A)(implicit tc: Semigroup[A]): AllOps[A] = new AllOps[A] {
 val self = target
 val typeClassInstance = tc
 }
 }
}

kind-projector
Extend Scala to support a "type lambda" syntax.

You can write:
 Functor[Either[E, ?]]

instead of:
 Functor[({type L[x] = Either[E, x]})#L]

implicit ops classes
For "fast" implicit operators, overhead is significant.
def fast[A](x: A)(implicit ev: Foo[A]): A =
 ev.foo(x)

implicit class FooOps[A](lhs: A) extends AnyVal {
 def foo(implicit ev: Foo[A]): A = ev.foo(lhs)
}

def slow[A: Foo](x: A): A = x.foo

Use machinist.

implicitly is slow
def fast[A](implicit ev: Monoid[A]): A =
 ev.empty

def slower[A: Monoid]: A =
 implicitly[Monoid[A]].empty

def alsoSlower[A: Monoid]: A =
 Monoid[A].empty // without imp

Use imp to speed things up.

by-name params are not ideal
• Type system usually doesn't distinguish A and (=> A).

• Methods cannot return (=> A).

• (=> A) is silently evaluated to A when "needed"

• (=> A) is not memoized

• (=> A) never releases references it captures

• (=> A) unconditionally allocates a Function0[A]

Use Eval[A].

by-name params are not ideal
Exception: using (=> A) for syntax is fine.
import cats._

def cond[A](b: => Boolean, t: => A, f: => A): Eval[A] =
 Later(b).flatMap { test =>
 if (test) Later(t) else Later(f)
 }

The Later(_) constructor wraps (=> A), adds memoization,
frees the thunk when possible, etc.

conclusions

conclusions
• None of this is easy.

• We're still learning the "best" way to do FP in Scala.

• (But we have some good heuristics.)

• Social and professional barriers to FP in Scala are real.

• We're all in this together.

Thank you.

the end

