
Scala eXchange 9 December 2016

Visions for collabora-on,
compe--on, and interop in Scala

Erik Osheim (@d6)

1

who am i?
• typelevel member λ

• maintain spire, cats, and other scala libraries

• interested in expressiveness and performance ☯

• support machine learning at stripe

code at h"p://github.com/non

2

original mo*va*ons
When proposing this talk I was thinking about:

• transi(ve dependency pain

• versioning pain

• build system pain

• binary compa(bility pain

• standardiza(on pain

Sensing a theme?

3

original mo*va*ons
Hume's advice for dealing with philosophical melancholy:

> I dine, I play a game of backgammon,
> I converse, and am merry with my friends.

This also works for many problems in FL/OSS!

4

bait-and-switch
Instead, I've decided to refocus around this theme:

> This talk will explore the challenges of
> designing and depending on Scala libraries,
> and also the trade-offs inherent in
> standardization.

(Ul$mately this talk is biased toward future library authors.)

5

what is this talk about?
Intended to be a high-level guide on library development/design:

• "real world" library development

• based on my experiences

• mildly-opinionated

• confessional style

TL;DR There isn't a lot of code on these slides.

6

our agenda
1. Typelevel overview and pitch

2. Why write a library?

3. Compe;;on in the library design space

4. Collabora;on in library development

5. Some good problems to have

6. Conclusions

7

typelevel overview
Some top-line numbers:

• 6 summits/events

• 6 hack days

• 46 projects

• 15 incubator projects

• hundreds of contributors

Thanks to everyone whose work makes this possible! !

8

cats
• provides abstrac/ons for func/onal programming in Scala.

• (e.g. Traverse, Monad, Free, and so on.)

• almost two years old

• current version: 0.8.1

• 120+ contributors

• ac/ve and helpful GiEer channel (1148 people)

h"p://github.com/typelevel/cats

9

http://github.com/typelevel/cats

cats update
• Worked through some changes removals (e.g. Xor). ☀

• A few outstanding design issues (e.g. mtl, default impls) ☁

• Hopefully not too major. !

• SBll no 1.0 release (sorry!) ✂

• But currently quite stable (we use it at stripe!) "

Take-away: Cats is already quite useful to many people!

10

teleology
noun, philosophy (from Greek telos, "end," and logos, "reason")

1. the doctrine that final causes exist.

2. the study of the evidences of design or purpose in nature.

3. such design or purpose.

11

typelevel teleology
Why does Typelevel exist?

for {
 c <- typelevelCompiler
 t <- pluginsAndTools(c)
 l <- foundationalLibraries(t)
 s <- specializedDataTypes(t, l)
 d <- domainLibraries(t, l, s)
} yield amazingSoftware(t, l, s, d)

12

typelevel teleology
"Cats aims to remove barriers preven0ng people from doing
func0onal programming in Scala."

Q: Why should people do func1onal programming?

A: Because using it they can produce amazing so*ware!

13

typelevel pitch

14

We want you...

...to make
func%onal programming

in Scala even be+er!
15

why write a library?

16

why write a library?
1. share work you've already done

2. scratch an itch

3. explore a new idea

4. rethink an exis;ng library

5. compulsive quest for perfec;on1

6. just for fun! ☃
1 While accep+ng that perfec+on is likely una6ainable.

17

why write a library?
It's important to consider your own mo3va3ons:

• why are you choosing to write this code?

• how much 4me do you want to devote to it?

• what part of it will you find fulfilling?

• how will you know when you are successful?

18

important disclaimer
You're not obligated to write a library!

(Or do any unpaid FL/OSS work for that ma7er!)

My goal: be real about the pros/cons/details of making a library.

19

wri$ng a library
Broad recommenda+ons:

• find a design principle or ethos

• focus on what is most necessary or interes7ng

• let your enthusiasm run wild -- don't get too serious

• give yourself permission to stop

• create a README as soon as you push to a repo!

20

anatomy of a README
For every new project I copy and update an old README:

NAME | project name as you want it written
FUN | quote, song lyric, joke, etc.
OVERVIEW | description/summary (tl;dr usage?)
QUICK START | sbt snippet, version info
DETAILED USAGE | working code snippets + prose
CAVEATS | known issues, disclaimers, etc.
LICENSE | copyright, license link, etc.

(Example: h,ps://github.com/non/sor9lege)
21

https://github.com/non/sortilege

why start with a README?
• the longer you wait the harder it will be

• explaining your library will show you its flaws

• if you decide to release your library2 you'll need one

• if you put the project down it's more likely someone else can pick it up

• don't obsess, just do what you can

• it can be fun!
2 It's totally reasonable to work on a library you don't plan to release! (cf. early Shapeless)

22

why release a library?
Semi-exhaus+ve list of reasons to release:

1. you'd like to use it in other code3

2. people have requested that you release it4

3. you just feel like it's ready to be released

Wri$ng a library is for yourself -- releasing it is for others.

4 Use your best judgement -- avoid peer pressure.

3 If you're at work, check with your coworkers first! !

23

releasing a library
• make sure you've documented your library !

• review, write tests, and try to measure/es8mate coverage ☑

• manage people's expeca8ons of compa8bilility ⚒

• try to lay out basic roadmap/future work ☼

• you can probably release sooner than you think5 #

5 This is s'll hard for me some'mes.

24

compe&&on

25

compe&&on
We should feel free to compete with (or reinvent) exis7ng libraries.

My claim: compe--on is usually a sign of health.

• a library's existence doesn't require people to use it

• diversity now is a longterm investment in the pla:orm

• diversity encourages specializa<on

• pressure on established libraries is produc<ve

• the alterna<ve is worse
26

example #1: property-based tes3ng
The scene: early 2015

The project: Cats

The realiza*on: the func)ons used in our law-checking were bogus!

The problem: most of Cats' interes.ng laws use func.on values

! ⇒ "
27

example #1: property-based tes3ng
(Background: the problem had existed for years.)

2015-01-17: @rickynils had opened #136
(Improve arbitrary func2on genera2on)

2015-05-05: @xuwei-k creates scalaprops

2016-06-12: @non submits #171
(Support non-constant arbitrary func1ons)

2015-06-21: @rickynils merges #171

2016-02-03: @rickynils releases ScalaCheck 1.13.0.

28

https://github.com/scalaprops/scalaprops

example #1: property-based tes3ng
Not only does Kenji's new propery-based tes5ng library not hurt
ScalaCheck, but it was an ac5ve catalyst to improving ScalaCheck.

• be$er func+on values generated

• determinis+c tes+ng

• minimize generator failures

• (coming soon) displaying/re-running failing seeds

The ScalaCheck changes caught real bugs in many projects, including Cats!

29

example #2: json parsing
Due to $work requirements, in 2012 I got interested in fast JSON parsing.

• Hand-rolled parser for performance

• Benchmarked using Caliper (now JMH) against popular parsers

• Scala parsers (Li@, Json4s, Spray, Play, Argonaut, Rojoma, etc.)

• Java parsers (GSON and Jackson, iniMally Smart-json)

• Made it easy to benchmark on arbitrary JSON files

The result?
30

example #2: json parsing
• Jon Pre)y's Rapture JSON supported mul3ple JSON backends

• This inspired Jawn to decouple its own parser and AST

• jawn-parser is now used by Circe, Rapture, and others

• It can support basically6 any JSON AST

6 Every AST I've encountered so far, at least.

31

example #2: json parsing
Popular JSON libraries stayed popular, but in at least a few7

cases8 the authors were inspired to make their JSON parsers
significantly faster.

! !

The real winner was the community (IMO at least).

8 Rojoma-json

7 Spray-json (Mathias showed me some op6miza6on tricks I hadn't thought of!)

32

compe&&on
Why bring these examples up?

• not because I want to brag about my own work

• these examples illustrate healthy diversity and compe::on

• there are plenty of other examples (e.g. Specs2 and ScalaTest)

• <reference to running sub-four minute miles>

33

collabora'on

34

collabora'on
Collabora'on is:

• asking ques,ons

• repor,ng issues

• fixing bugs or adding features

• helping set up builds, CI, releases, etc.

• adding documenta,on or tutorials

• talking through future plans

35

collabora'on
Why are collaborators especially important?

• scratching different itches

• o0en have different backgrounds and knowledge than you

• can provide valuable encouragement and support

• can pick up slack when you are busy (or low energy)

• (...or just helpfully give you a poke now and then)

36

example #1: spire
2011-07-17: Olivier Chafik9 helps me10 write a compiler plugin

2011-09-08: Tom Switzer argues against a design I proposed

2011-12-17: Tom Switzer and I propose a series of SIPs

2013-02-26: Spire 0.3.0 is released (powered by macros11)

2013-11-17: Lars Hupel blogs about Discipline12

2014-03-07: spire-ops 0.1.0 release (later machinist)

12 Created to support efficient law-checking in Spire

11 Thanks to Eugene Burmako, Jason Zaugg, and Olivier Chafik

10 Having wri,en Scala for all of five months

9 Author of loop-op-mizing ScalaCLPlugin

37

example #1: spire
Take-aways:

• My original library design was overly specific and limited

• Finding a design suppor9ng several real use-cases was frui<ul

• We were lucky to have help from so many people

• Early principles13 helped keep Spire on track over many years.

13 "Intended to be fast, generic, and precise."

38

example #2: circe
h"ps://github.com/circe/circe

• not a project I'm directly involved in (hi @travisbrown!)

• fork of argonaut-io/argonaut

• notable for its quality and dedicaAon to interoperabilty

• 50 contributors

• 31 downstream projects (using or integraAng with circe)

39

https://github.com/circe/circe
https://github.com/argonaut-io/argonaut

example #2: circe
Circe supports (or uses):

• Jawn and Jackson (for parsing)

• Shapeless (for auto and semiauto deriva8on)

• Refined (uses refined type's predicates during decoding)

• Scodec (able to decode bit and byte vectors)

• Monocole (experimental op8cs support)

• Spray (marshaling and unmarshaling data)

40

examples #2: circe
S"ll providing patches upstream to argonaut:

• JsonPath (thanks @julien-truffaut!)

• bug fixes and patches e.g. #257 (numeric failures)

• two-way communicaCon between projects

Extra-project collabora/on is s/ll collabora/on.

41

collabora'on
Collabora'on take-aways from Spire:

• is o&en ini)ally awkward

• can be the difference between good and great

•)ming outside one's control -- try to be ready14

• hard to unvervalue the)me you take to help someone

14 with a good README, type-checked docs, or even a manual.

42

collabora'on
Collabora'on take-aways from Circe:

• the more connec+ons you make the more compelling your library
can be

• gives people many different ways to get involved

• forking is a form of collabora+on (at least poten+ally)

43

good problems

44

good problems
List of "problems" which are a sign you're doing something right:

1. People are repor+ng bugs and opening PRs ♙

2. People are asking for releases ♘

3. Feature requests & scope creep ♗

4. People need you to upgrade versions (or not) ♖

5. Other libraries are compe+ng in the same space ♕
45

problem #1: bugs and PRs

46

problem #1: bugs and PRs
O"en come at unexpected /mes (e.g. when you're at a conference !)

Best case:
 - Fix obvious bug (or add obviously-missing feature)
 - Fits with exis=ng style, naming conven=ons, etc.
 - Easy to sign-off on

Usual case:
 - Takes some /me to understand the issue and/or solu/on
 - May require modifica/on15 of some sort
 - Can be hard to formulate a good response quickly

15 Either of the PR or of your own vision/ideas.

47

problem #1: bugs and PRs
Despite all of this, trying to respond quickly is really important!

• especially if they are on the wrong track!

• explaining your library is a good way to vet it

• ge:ng even one extra person on the same page is huge

• you aren't the only person reading issue/PR conversa@ons

• issue and PR conversa@ons are historically important

(Confession: this is something at which I'm s4ll improving.)

48

problem #2: releases
So now let's say other people are hacking on your library.

It's likely that eventually they'll want it released so they can use it.

⚠ don't panic! ⚠
49

problem #2: releases
Se#ng up your project to release is a one-4me pain:

• Set up Sonatype (or Bintray) creden3als

• Set up GPG key

• Configure plugins like sbt-release, sbt-sonatype, etc.

• Just requires pa3ence and persistance

• Sort of like visi3ng the DMV16 (or localized equivalent)

16 The Department of Motor Vehicles

50

problem #2: releases
• it's embarassing to mess up releases

• but not really a big deal (just release a new version)

• people will use whatever number is in your README

You'll never botch as many releases as I have!
(seriously)

51

problem #2: releases
Binary compa,bility:
 - don't worry about this at first!
 - o:en not expected for 0.x library versions
 - can be a real pain (although less so in Scala 2.12!)

This burden is likely to grow over 4me:
 - people asking for binary compa4bility is a sign of success17

 - be transparent with poten4al users about compa4bility roadmap

17 Simon Peyton-Jones says: "avoid success at all costs."

52

problem #3: feature requests & scope creep
Other people will use your library in ways you never imagined.

What happens when they propose changes you didn't foresee?

(Similar to the problem of unexpected PRs.)

53

problem #3: feature requests & scope creep
Steps to take:

1. try to look past your own assump1ons

2. consider the proposal on its merits

3. think about your project's principles/goals18

4. is your library too big? too small? just right?

5. try to respond promptly, even to ask for more 1me

18 Which are in your README, right? !

54

problem #3: feature requests & scope creep
Fallacies:

1. "I could do that same thing but be3er." 19

2. "I'll do anything for my users."

3. "If I just leave this alone, maybe it will go away."

4. "I can't accept this for <vague reasons>" 20

5. "Just one more thing..." 21

21 Try to be up-front about effort required.

20 When possible, document your principles in advance.

19 If you want all code to be in your style, use ScalaFmt.

55

problem #4: versioning chaos
Poten&al versioning problems:

• Suppor'ng old (or new) Scala versions

• People complaining about your current dependencies

• People asking you to add dependencies

• Need to support several incompa'ble versions

56

problem #4: versioning chaos
Solu%ons:

• Mul%-project builds (e.g. circe-core, circe-optics, etc.)

• Have the courage to add dependencies you want.

• (And reject those you don't!)

• Don't support more than you want to ini%ally.

• (People who ask for new stuff are more likely to help.)

57

problem #5: other libraries
This is the big one. 22

22 Originally more of the talk was devoted to this one point.

58

problem #5: other libraries
Let's start with the ecosystem analogy.

From Darwin's On the Origin of Species we know that:

• species evolve via natural selec0on

• individuals are compe0ng for finite resources

• specializa0on and diversity arises from common ancestors

Indeed, our libraries are compe2ng for 2me, a5en2on, usage, etc.

59

problem #5: other libraries
Observa(ons:

• par%cular ethos or principles help drive specializa%on

• the bigger your footprint the more libraries you compete with

• if extrinsically-mo%vated: look for promising niches

• if intrinsically-mo%vated: don't sweat this stuff! 23

23 Libraries don't have to be used to be important!

60

problem #5: other libraries
Things to consider with compe1ng libraries:

• How much overlap is there? (A∧B)

• How much non-overlap is there? (A⊻B)

• Are the libraries converging or diverging?

• Is other other library's ethos similar or dis=nct?

• How ac=ve are the libraries?

61

example #1: spire and algebird
twi$er/algebird
Abstract Algebra for Scala.
(Started life as an internal library at Twi$er.)

non/spire
Powerful new number types and numeric abstrac5ons for Scala
(Started life as a series of proposals/hobby project.)

62

https://github.com/twitter/algebird
https://github.com/non/spire

example #1: spire and algebird
Algebird ∧ Spire (overlap)
algebraic type classes, intervals

Algebird \ Spire (Algebird-only)
sketches, approximate data structures, "Scalding"

Spire \ Algebird (Spire-only)
numeric types/methods, la4ces, sort/selec5on, PRNGs

63

example #1: spire and algebird
We pulled out a common subset into typelevel/algebra.

• took longer than it should have

• required trust and open dialogue

• found a design we could both live with

Algebird merged #523 (Use standard algebra types)
Spire merged #610 (Migra1on to algebra, redux)

Both projects will be releasing in 3me for Christmas 2016. !

64

https://github.com/typelevel/algebra

example #1.5: algebra and cats
It turned out that Cats shared a common subset with Algebra as well.

• Semigroup through Group

• Eq through Order

• Band, Semilattice, etc.

We split these out into cats-kernel.

Algebird and Spire will be Cats-compa6ble very soon! ! ♜ "

65

compe&&on or collabora&on?
Darwin's theory was followed by a wave of social darwinism.

• applied biological concepts to human society

• emphasized individual struggle

• de-emphasized coopera8on

But there's an alterna-ve...

66

compe&&on or collabora&on?
"Sociability is as much a law of nature as mutual struggle."

-- Peter Kropotkin, Mutual Aid: A Factor of Evolu2on

(Corresponds to modern biological ideas of mutualism or altruism.)

67

standardiza)on
Why are standards useful?
 - (poten4ally) fewer things to learn
 - slow work at one level to permit faster work at another
 - reify (or create) usage norms

When are standards poten-ally harmful?
 - when the standard isn't what you really want
 - when you think there's interes-ng work le: to be done24

24 Or when the design isn't sufficiently ve6ed.

68

standardiza)on
Rugged individualist: probably never supports standards.

Technocrat: probably wants everything standardized.

Most of us are somewhere in-between.

69

standardiza)on
typelevel/algebra can be thought of as an informal standard.

(Same with typelevel/cats-kernel.)

This is my preferred way to standardize.

Ul#mately you'll have to judge the situa#on yourself!

70

conclusions

71

conclusions
• Wri%ng libaries can be lots of fun.

• Follow your mo%va%on

• Be honest with yourself (and others)

• Meditate on your principles

• Find opportuni%es for collabora%on

• Embrace healthy compe%%on

• Let a thousand flowers bloom! !"#$

72

Scala eXchange 9 December 2016

the end
Erik Osheim (@d6)

73

