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Unruly Creatures:
Strategies for dealing with Real 

Numbers

Erik Osheim ( @d6)



who am i?

¥ typelevel  member !

¥ maintain spire  and several other scala libraries

¥ interested in expressiveness and  performance ☯

¥ hack scala code at meetup  

code at http://github.com/non



(The following slides assume the following imports.)

import  spire.algebra._
import  spire.implicits._
import  spire.math._

(These are good for doing exploratory work in the REPL.)

You can Þnd the code for Spire at:

https://github.com/non/spire



What will this talk cover?

¥ Primitive math blooper-reel

¥ DifÞculties of numeric representation

¥ Quick summary of some types and trade-offs

¥ Detailed treatment of computable real numbers



/   Math warning / 

This talk should not require a ton of prior math knowledge.
My goal is to cover this material in an approachable way.

(Almost) none of us are experts. I am not an expert.

Please ask questions if you are confused, or if I present
something in a confusing way (quite likely).



Fixed-width integers

Most of us use Int  and Long every day.

These types are fast, and usually work well.

But when they fail, they fail catastrophically.



Pop Quiz

For how many Int  values will (x == -x)  return true ?
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For how many Int  values will (x == -x)  return true ? 2
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¥ Positive?

¥ Negative?
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For how many Int  values will (x == -x)  return true ? 2

How many Int  values are there? 4294967296 (0x100000000L)
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Pop Quiz

For how many Int  values will (x == -x)  return true ? 2

How many Int  values are there? 4294967296 (0x100000000L)

¥ Positive? 2147483647

¥ Negative? 2147483648

If (x > 0)  and (y > 0) , is (x + y > 0) ?



Pop Quiz

For how many Int  values will (x == -x)  return true ? 2

How many Int  values are there? 4294967296 (0x100000000L)

¥ Positive? 2147483647

¥ Negative? 2147483648

If (x > 0)  and (y > 0) , is (x + y > 0) ? not always



MaxValues

¥ Int  fails if you need to:

¥ measure US spending in dollars

¥ count humans on Earth

¥ Long fails if you need to:

¥ measure US energy consumption in Joules

¥ weigh the Earth in pounds.



So integer types are pretty easy to understand.

But when they fail, they fail catastrophically .



How about floating point?

Improvements:

¥ Can represent fractional values ("real" division)

¥ Much wider range of values (max is ~1.8 x 10^308)

¥ Overßows to PositiveInfinity

So, it just works?



The other shoe

Adding numbers is what computers are good at.

0.15  + 0.15  // 0.3 
0.1   + 0.2   // 0.30000000000000004

( 0.15  + 0.15 ) == ( 0.1  + 0.2 ) // false

Wait, what?



Something about epsilons...

Four (unsuccessful) attempts, in order of complexity:

val  x: Double = ...
val  y: Double = ...
val  eps = 0.000001

(x == y) // nope, as per previous slide
(x - y).abs < eps // what if x and y are very small?
((x - y).abs / y) < eps // what if y is negative?
((x - y).abs / (x.abs + y.abs)) < eps // zeros?



Maybe this is it?

def  okFineUgh(x: Double, y: Double, eps: Double) = {
  import  java.lang.Double.MIN_NORMAL
  val  xa = x.abs
  val  ya = y.abs
  val  d = xa - ya
  if  (x == y) true
  else  if  (x == 0 || y == 0 || d < MIN_NORMAL) {
    d < (eps * MIN_NORMAL)
  } else  d / (xa + ya) < eps
}



Error propogation

Often you will see benign errors in ßoating point calculations.

val  ns = ( 0 until 1000).map(_ <z 0.01 ).toList

ns.sum // 9.999999999999831

The answer should be 10, but this is close right?



<benign/malignant joke here>

val  ns = ( 0 until 1000).map(_ <z 0.01 ).toList

def  ten(big: Double) = (big :: ns).sum - big

ten( 0.0 )  //  9.999999999999831 same, great
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ten( 1e6)  // 10.000000009313226 weird but ok



<benign/malignant joke here>

val  ns = ( 0 until 1000).map(_ <z 0.01 ).toList

def  ten(big: Double) = (big :: ns).sum - big

ten( 0.0 )  //  9.999999999999831 same, great
ten( 1e6)  // 10.000000009313226 weird but ok
ten( 1e9)  //  9.999990463256836 back below 10



<benign/malignant joke here>

val  ns = ( 0 until 1000).map(_ <z 0.01 ).toList

def  ten(big: Double) = (big :: ns).sum - big

ten( 0.0 )  //  9.999999999999831 same, great
ten( 1e6)  // 10.000000009313226 weird but ok
ten( 1e9)  //  9.999990463256836 back below 10
ten( 1e12) // 10.009765625 back above 10...?



<benign/malignant joke here>

val  ns = ( 0 until 1000).map(_ <z 0.01 ).toList

def  ten(big: Double) = (big :: ns).sum - big

ten( 0.0 )  //  9.999999999999831 same, great
ten( 1e6)  // 10.000000009313226 weird but ok
ten( 1e9)  //  9.999990463256836 back below 10
ten( 1e12) // 10.009765625 back above 10...?
ten( 1e15) //  0.0 wait what!?!?!?



<benign/malignant joke here>

val  ns = ( 0 until 1000).map(_ <z 0.01 ).toList

def  ten(big: Double) = (big :: ns).sum - big

ten( 0.0 )  //  9.999999999999831 same, great
ten( 1e6)  // 10.000000009313226 weird but ok
ten( 1e9)  //  9.999990463256836 back below 10
ten( 1e12) // 10.009765625 back above 10...?
ten( 1e15) //  0.0 wait what!?!?!?
ten( 1e14) // 15.625 what is this i don't even



Greatest Hits
10.0  / 0.0  // Infinity
 0.0  / 0.0  // NaN

Double.NaN == Double.NaN      // false
Double.NaN compare Double.NaN // 0

 2.0  * 0.0  //  0.0
- 2.0  * 0.0  // -0.0

0.0  == - 0.0       // true
0.0  compare - 0.0  // 1



Is floating point dumb?

1. No.

2. Seriously, no.

3. IEEE-754 is incredibly good work.

4. William Kahan is way smarter than I am.

5. Given a very hard problem they did a great job.

See http://ßoating-point-gui.de  for links and more info.



Floating point is amazing

¥ Long and Double have the same number of bits (64).

¥ Long can't represent fractional values (e.g. 0.5).

¥ Long fails catastrophically at the limits of its range.

¥ Long doesn't do any kind of rounding besides truncation.

¥ Double does all of these with the same number of bits.

¥ Therefore, Double has to "move" the problems somewhere.





Astronaut training

IEEE-754 was standardized in 1985.

It was intended to be useful for scientists and analysts who:

¥ Compute error bounds.

¥ Check for possible ßoating point traps and errors.

¥ Understand the structure and limitations of ßoating point.

(i.e. not true of ~99.9% of us using ßoating point today)



Problems we've seen

1. Violating mathematical intuitions

2. Using a Þxed number of bits to describe numbers.

3. Rounding/precision errors

4. kth-roots and transcendental functions



Integers ( �� )



Fixing integer overßow is easy.

Use SafeLong (or BigInt  if you hate speed).

SafeLong( 1000) ** 5
// 1000000000000000

SafeLong( 1000) ** 10
// 1000000000000000000000000000000

SafeLong( 1000) ** 20
// 1000000000000000000000000000000000000000000000000000000000000

Behaves exactly as a mathematician would expect.



What SafeLong has

¥ Whole numbers (e.g. 5)

¥ Addition ( +), Subtraction (- ), Multiplication ( * )

¥ Quotients ( / ) and Remainders (%)

¥ Non-negative integer exponentiation ( ** )

¥ Fast implementation

¥ Guarantee that working with small numbers is fast.



What SafeLong lacks

¥ Fractional values (e.g. 0.5 )

¥ Real division

¥ Roots (e.g. sqrt )

¥ log , exp, sin , and so on...



Rational numbers ( ! )



¥ Fractions like 1/3 , 99/100 , and so on...

¥ (p/q)  where p and q are integers and (q != 0) .

¥ Many ways to write the same number (e.g. 1/2, 2/4, ...)

¥ Formally, each "number" is the set of all equivalent fractions.



To avoid differing representations of the same number, Spire:

¥ Always uses 0/1 for zero.

¥ Always uses simpliÞed fractions (e.g. 64/100 !  16/25).

¥ Always uses a positive denominator.

(Depending on the magnitude and precision number, Spire 
will use either Long or BigInt  values internally.)



When doing arithmetic, rational numbers never need to round:

val  ns = ( 1 to 5).map(n <z Rational(n, n + 1))

// Vector(1/2, 2/3, 3/4, 4/5, 5/6)

ns.qsum // 71/20

def  approx(n: Int) = ( 1 to n).map(n <z Rational(n, n + 1)).qsum

approx( 10) //           221209/27720
approx( 20) //         89778475/5173168
approx( 30) // 1947480812553443/72201776446800



val  q = approx( 100)

// 26984782829491135215947420723253902574955589
// divided by
// 281670315928038407744716588098661706369472

q.toInt // 95

Again, no surprises for mathematicians.



However, there are possibly some surprises for us.

When adding rationals with very different[*] bases:

¥ A common denominator has to be found

¥ This might be much larger than the inputs

r "3/17"  + r "4/19"  + r "5/23"  + r "6/29"
// 174784/215441

This is not the case for multiplication/division.



What Rational has

¥ Fractional numbers (e.g. 5, 1/5, 200/7, etc.)

¥ Addition ( +), Subtraction (- ), Multiplication ( * )

¥ Division (/ ), Quotient ( /~ ), and Remainders (%)

¥ Integer exponentiation ( ** )



What Rational lacks

¥ Roots (e.g. sqrt )

¥ log , exp, sin , and so on...

¥ Guarantee that working with small numbers is fast.

¥ Guarantee that adding numbers is fast.



Real numbers ( �� )



"Math Stuff"

¥ The set is described as uncountably inÞnite .

¥ Contains the rational numbers.

¥ Also contains irrational numbers, which can be:

¥ Algebraic (e.g. ! 2)

¥ Transcendental (e.g. " )

¥ Almost all  of the numbers in ��  are transcendental.



"More Math Stuff"

Each Real number (x !  �) can be thought of as any of:

• Infinite sequence of approximations "getting closer" to x.

• Partition of the rationals into (_ < x) and (x <= _).

• <insert explanation of Dedekind-completeness here>

(Disclaimer: I was not great at Real Analysis in college.)



What does all of that mean?
• Many values in � are difficult/impossible to represent.

• We may need to use approximations:

• Think of what we saw with Double earlier.

• We will need to consider limiting error bounds.

• Also... Real numbers may not actually exist!



The Finitist Opinion

"God made the integers, all else is the work of man."

Leopold Kronecker

The Classical Opinion

"No one shall expel us from the Paradise that Cantor has 
created."

David Hilbert



Computers make us 
all finitists and 
constructivists.



So what can we do?

We cheat.
The computable reals are a countable subset of �.

• In principle, "almost all" of numbers in � are uncomputable.

• In practice, it is fairly hard to "find" uncomputable numbers.

http://math.stackexchange.com/questions/462790/are-there-
any-examples-of-non-computable-real-numbers



How are computable numbers defined?

A computable number x is defined as a function.

Given bits, return num so (num / 2^bits) is "closest" to x.



Basic idea in Scala

case class CR(f: Int ⇒ SafeLong) {
  // Approximate this real value as
  // a rational number with k bits,
  // i.e. as (n / 2^k).
  def apply(bits: Int): Rational = {
    val denom = SafeLong(2) ** bits
    Rational(f(bits), denom)
  }
}



Parenthetical aside

This is implemented in Spire as Real.
There are some complications we do for speed/accuracy.

But the idea is the same.



Design credit

The original design is based on the ERA library for Haskell:

1. "The World's Shortest Correct Exact Real Arithmetic 
Program?" David Lester
http://www.sciencedirect.com/science/article/pii/
S0890540112000727

2. https://hackage.haskell.org/package/numbers-2009.8.9/
docs/src/Data-Number-CReal.html

(Spire extends this basic design to speed up "common cases".)



How does it all work?

Error occurs when approximations are "too far" from the truth.

Imaging we are approximating values with one decimal place.
x is 1.1 (approximating 1.14)
y is 2.8 (approximating 2.84)

z = x + y
z is 3.9 (approximating 3.98)

A better approximation would have been 4.0.



How does it all work?

To approximation an arithmetic operation, we usually require 
more precision on the inputs than we are expected to produce.

(Numerical analysts spend a lot of time figuring out exactly 
how to do this.)



How does it all work?

Here's how to implement addition on computable reals:
def roundDiv(n: SafeLong, d: SafeLong) =
  (n + (d / 2)) / d

def addition(x: CR, y: CR): CR =
  CR({ bits ⇒
    val nx = x(bits + 2)
    val ny = y(bits + 2)
    roundDiv(nx + ny, 4)
  })



How does it all work?

Negation is really easy!
def negation(x: CR): CR =
  CR(bits ⇒ -x(bits))

So are max and min!
def min(x: CR, y: CR): CR =
  CR(bits ⇒ x(bits) min y(bits))

def max(x: CR, y: CR): CR =
  CR(bits ⇒ x(bits) max y(bits))



Things start getting trickier

def sizeBaseTwo(n: SafeLong) = log2(n) + 1

def multiplication(x: CR, y: CR): CR =
  CR({ bits ⇒
    val sx = sizeBaseTwo(x(0).abs + 2) + 3
    val sy = sizeBaseTwo(y(0).abs + 2) + 3
    val nx = x(bits + sy)
    val ny = y(bits + sx)
    roundDiv(nx * ny, 2 ** (bits + sx + sy))
  })



The Calculus Affair

Let's try something harder: exp(x).

This is (e^x) which is can be written as an infinite series:
exp(x) = 1 + x + (x^2 / 2!) + (x^3 / 3!) + ...

// ! is for factorial, n! = 1 * 2 * 3 * ... * n



The Calculus Affair

Let's simulate that in Scala to see what is going on:
def terms(x: SafeLong, n: Int): Stream[Rational] =
  Rational(x ** n, n.!) #:: terms(x, n + 1)

val series = 1 #:: terms(SafeLong.two, 1)

series.take(10).toList
// List(1, 2, 2, 4/3, 2/3, 4/15, 4/45, 8/315, 2/315, 4/2835)



The Calculus Affair

How well does this do?
math.exp(2) // 7.38905609893065

series.take(2).qsum.toDouble  // 3.0
series.take(5).qsum.toDouble  // 7.0
series.take(10).qsum.toDouble // 7.388712522045855
series.take(20).qsum.toDouble // 7.389056098930174
series.take(30).qsum.toDouble // 7.38905609893065

It works!



The Calculus Affair

We can get more precise estimates than math.exp:
series.take(40).qsum.toBigDecimal
// 7.38905609893065022723042746057500781

series.take(80).qsum.toBigDecimal
// 7.3890560989306502272304274605750
//   0781318031557055184732408712782
//   2522573796079057763384312485079



This is how we handle irrational numbers:

• Find an infinite (but computable) series for x.

• Determine how many terms we need for a given precision.

• Compute the terms, add them, return the approximation.

(In practice we want to find "quickly converging" series.)



How does this look with Real?

Real(2)           // 2
Real(2).sqrt      // 1.4142135623730950488016887242096980785697
Real(2).nroot(3)  // 1.2599210498948731647672106072782283505703
Real(2).nroot(10) // 1.0717734625362931642130063250233420229064

Real.pi           // 3.1415926535897932384626433832795028841972
Real.e            // 2.7182818284590452353602874713526624977572
Real.exp(2)       // 7.3890560989306502272304274605750078131803



Euler would be pleased

import Complex.i
import Real.{e, pi, one}

val i = Complex.i[Real]
val e = Complex(Real.e)

e ** (i * pi) + one // (0 + 0i)



What's the catch?

There is a catch, right?



You got me



Achilles Heel

Computable numbers have one major flaw:

There's no 100% reliable way to compare them.



Achilles Heel

Computable numbers have one major flaw:

There's no 100% reliable way to compare them.

What? That's crazy

Let me explain...



It depends what you mean

Remember that computable reals produce approximations

We can get as good an approximation as we want...

...but we have to ask for it.

(And we only get what we ask for.)



Caveats

1. When we have a computable real r

2. ...and we ask for an "n-bit" approximation

3. ...and get back x

4. ...we know x is the best n-bit approximation for r.

Crucially, we don't know if (x < r), (x = r), or (r < x).



When is this a problem?

It's not a problem when being "near" is fine.

It is a problem testing for branches:
// for input near zero, output is also near zero.
def probablyOk(r: Real): Real =
  if (r < 0) r * 3 else r * 2

// it's possible small non-zero inputs values will
// have wildly-wrong output values.
def ughOh(r: Real): Real =
  if (r == 0) Real(0) else Real(100)



Couldn't you ask for more precision?

How would you know if it's ever enough?

You could get a correct sign for any non-zero number...

...provided you're willing to let the program hang on zero.



When is this a problem?

• Sign tests (e.g. .signum)

• compare, <, ==, and so on

• Trig functions (e.g. atan) which require branching

However, methods like abs, min, and max are fine.



Future plans for Real

Currently Real provides these methods that can have error:

• It's possible we will make it restrictive-by-default soon.

• If so, an import will restore the current behavior.

• We should make precision used for sign tests pluggable.

• Your feedback and ideas are valuable.



Alternative solutions

There is a Spire branch which implements continued fractions:

• Alternative strategy from the one presented here.

• Different performance characteristics.

• Mostly the same drawbacks

(Continued fractions are fairly brain-bending.)



Alternative solutions

Spire also supports an Algebraic type:

1. Able to do exact sign tests.

2. Supports algebraic irrational numbers (e.g. roots)

3. Does not support transcendental numbers.

Often useful in conjunction with the FpFilter type.

(Tom Switzer should do a presentation on this!)



Alternative solutions

1. "On Guaranteed Accuracy Computation." C. K. Yap.
http://www.cs.nyu.edu/exact/doc/guaranteed.pdf

2. "A Separation Bound for Real Algebraic Expressions." C. 
Burnikel, et al.
http://stubber.math-inf.uni-greifswald.de/informatik/
PEOPLE/Papers/ESA01/sepbound01.pd

3. "A New Constructive Root Bound for Algebraic 
Expressions." C. Li and C. Yap.



Alternative solutions

You could imagine implementing symbolic evaluation.

(Similar to systems like Mathematica or Sympy.)

That would be... a lot of work.



☞ There is no magic bullet. ☜



Summary

1. Int and Long are fast and dumb.

2. SafeLong is still pretty fast but safe.

3. Double is fast and as-smart-as-possible, but no smarter.

4. Using primitives "by default" is probably not smart.

5. If you use Double you already work with approximations.

6. Use Rational for exactness, and Real for the "best" estimates.

7. There is no silver bullet.



Summary (continued)

• Previous talks have discussed generic numeric code.

• Spire goes to great lengths to support generic algebra.

• Hopefully these trade-offs help motivate that work.

You can learn more about Spire's types and type classes in the 
Spire User's Guide:

https://github.com/non/spire/blob/master/GUIDE.md
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the end


