Opaque types
Understanding SIP-35

Erik Osheim @d6

aaaaaaaaaaa

who ami?

— typelevel member A
— maintain spire, cats, and other scala libraries
— interested in expressiveness and performance @

— ml-infra at stripe

code at: http://github.com/non

nnnnn la 2018

disclaimer

1. This talk discusses potential changes to Scala.
2. The SIP has not yet been approved.
3. It's still possible the proposal will change.

Caveat emptor!

nnnnn la 2018

overview

What we will cover:

1. Types, classes, and type aliases
2. SIP-35: opaque types

3. Motivation and various examples
4. Pros, cons, and comparisons

nnnnn la 2018

Types, classes,
and type aliases

aaaaaaaaaaa

types

What do you think Scala types are?

nnnnn la 2018

types

What do you think Scala types are?

— methods of declaring memory locations
— tags attached to values at runtime

— java classes

— sets of values

— systems for constraining values

— things we write after the colon (e.g. x: Int)

nnnnn la 2018

types

What do you think Scala types are?

I e a¥a avaV¥Ya) ala a¥Ye aa¥Yalaa¥Ya)
AW w w @ w v w @ w
L J

— java classes
— sets of values
— systems for constraining values

— things we write after the colon (e.g. x: Int)

nnnnn la 2018

are types just classes?

String is definitely a type, and also a class.

Maybe this is right?

nnnnn la 2018

are types just classes?

Consider the following code:
Pair[A](first: A, second: A)

It definitely produces a single class:

$ scalac Pair.scala && 1s -1
Pair.class
Pair.scala

nescala 2018

10

are types just classes?

Q: How many distinct types does Pair produce?

class Pair[A]l(first: A, second: A)

nnnnn la 2018

11

are types just classes?

Q: How many distinct types does Pair produce?

class Pair[A]l(first: A, second: A)

A: Trick question!

Pair[Int], Pair[String], Pair[List[Doublel]l],
Pair[Pair[Boolean]], and so on...

Given any type T we can produce a new Pair[T].

nnnnn la 2018

12

digression

Pair is a "parameterized type"

— also known as a "type constructor”

— given a type, it produces a type

— sometimes written informally as: x > *
— not a "proper type", it needs a parameter

nnnnn la 2018

13

types

What do you think Scala types are?

I e a¥a avaV¥Ya) ala a¥Ye aa¥Yalaa¥Ya)
AW w w @ w v w @ w
L J

— Eeftsabse e e pnlpes o rapdene
— SeSass s

— sets of values

— systems for constraining values

— things we write after the colon (e.g. x: Int)

nnnnn la 2018

14

sets of values?

sealed trait Duprass

sealed trait Minton

case object Horlick extends Minton with Duprass
case object Claire extends Minton with Duprass

val xs: List[Duprass] = List(Horlick, Claire)

val ys: List[Minton] = xs
// <console>:13: error: type mismatch;

// found : List[Duprass]
// required: List[Minton]
// val ys: List[Minton] = xs

// A

nescala 2018 15

types

What do you think Scala types are?

I e a¥a avaV¥Ya) ala a¥Ye aa¥Yalaa¥Ya)
AW w w @ w v w @ w

— systems for constraining values
— things we write after the colon (e.g. x: Int)

nnnnn la 2018

16

type aliases

Type aliases allow us to rename a type:

type TrueOrFalse = Boolean

val t1: TrueOrFalse = true
val t2: Boolean = t1 // ok
val t3: TrueOrFalse = t2 // also ok

Notice TrueOrFalse is the same as Boolean.

nescala 2018

type aliases

Type aliases can also introduce type constructors:

type AlwaysInt[A] = Int

type LeftOrRight[A] = Either[A, Al

type AssocRow[K, V] = List[(K, V)]

nescala 2018

18

type aliases

// toy example for illustration
case class User(uid: Long, gid: Long, name: String)

object Db {
def findById(u: Long): Option[User] = ...
def findByGroup(g: Long): List[User] = ...

¥

val Some(root) = Db.findById(0)

nescala 2018

kel

type aliases

type UID = Long
type GID = Long
case class User(uid: UID, gid: GID, name: String)

object Db {
def findById(u: UID): Option[User] = ...
def findByGroup(g: GID): List[User] = ...

¥

val Some(root) = Db.findById(0) // still works

nescala 2018 20

type aliases

type UID = Long
type GID = Long
case class User(uid: UID, gid: GID, name: String)

object Db {
def findById(u: UID): Option[User] = ...
def findByGroup(g: GID): List[User] = ...

¥

val Some(root) = Db.findById(0) // still works
val weird = Db.findById(root.gid) // huh?

nescala 2018

type aliases

Type aliases:

— do not introduce new types

— are completely erased at compile-time
— can introduce type constructors

— can also adapt existing type constructors

nnnnn la 2018

22

SIP-35
opaque types

aaaaaaaaaaa

what's a SIP?

— stands for Scala Improvement Process

— formal proposal to change Scala

— specifies changes to Scala Language Specification
— also includes motivation, examples, etc.

— process has existed since 2012

— rebooted by Scala Center in mid-2016.

nnnnn la 2018

24

sip-35

Co-authored by Jorge Vicente Cantero and Erik Osheim

TL;DR:

> This 1s a proposal to introduce syntax
> for type aliases that only exist at
> complle time and emulate wrapper types.

https://docs.scala-lang.org/sips/opaque-types.html

(This document is still evolving, will likely change.)

nnnnn la 2018

PAS)

what does sip-35 mean?

It's easiest to compare opaque types with type aliases.
Type aliases are transparent:

— code can "see through" type aliases in proper types
— authors can inline aliases present in proper types
— aliases do not introduce new types

— are completely erased before runtime

— do not produce classes

nnnnn la 2018

26

what does sip-35 mean?

Opaque types are... well... opaque:

— code cannot see through an opaque type
— authors cannot inline opaque types

— opaqgue types do introduce new types

— are still completely erased before runtime
— still do not produce classes

nnnnn la 2018

27

let's take a look!

Here's an opaque type to go along with our
earlier example:

opague UID =

That's it!

nnnnn la 2018

28

well... maybe not

How do you produce a value of type UID?

opaque type UID = Long

val ul: UID = 0L // fails
val u2: UID = new UID(OL) // nope
val u3: UID = UID(OL) // still no
val ud: UID = 0OL.asInstanceOf[UID] // cheater!

nescala 2018

29

location is everything!

How do you produce a value of type UID?

opaque type UID = Long

object UID {
val ul: UID = QL // ok

¥

val u2: UID = Q0L // not ok

nescala 2018

30

location is everything!

— opaque types may have companion objects

— within this companion opaque types are transparent
— constructors, accesors, and extractors must go there
— otherwise, no access is permitted

nnnnn la 2018

31

what is erasure?

Consider the following:

val 1st: List[Any] = List(1, "two", 3.0)
Ist.foreach(println)

// 1
// two
// 3.0

We used toString and println to "recover”
type information from lst.

nnnnn la 2018

£

what is erasure?

However, opaque types are different:

List(UID.ul, 1.0, "two").foreach(println)
// 0

// 1.0
// two

List(oL, 1.0, "two").foreach(println)
// 0

// 1.0

// two

nescala 2018

S8

what is erasure?

— Erasure "erases" type information
— UID and Long are indistinguishable at runtime
— opaque types cannot override methods (e.g. toString)

nnnnn la 2018

34

Motivation and
various examples

aaaaaaaaaaa

motivation

introduce types without classes.
. give authors more control over erasure.
. predictable runtime representation/performance

> W Nnp S

. limit access to existing classes/types

nnnnn la 2018

36

example: safe nullable

Code as-written by author:

opaque type Safel[A <: AnyRef] = A

object Safe {
def apply[A <: AnyRef](a: A): Safel[A] = a

def recover[A <: AnyRefl(na: Safel[A], a: A): A =
1T (na == null) a else na

def bind[B <: AnyRef]J(nha: Safe[Al],
f: A => Safe[B]): Safe[B] =
1f (na == null) null else f(na)
J

nescala 2018

S/

example: safe nullable

Code as-emitted by compiler:

object Safe {
def apply[A <: AnyRef](a: A): A = a

def recover[A <: AnyRef](na: A, a: A): A =
1T (na == null) a else na

def bind[B <: AnyRefl(na: A, f: A => B): B =
1f (na == null) null else f(na)

nescala 2018

38

example: safe nullable

Code as-written by author:

val x: SafelString] = Safe(unsafeJavaApi(...))
val s: String = Safe.recover(x, "")

Code as-compiled (post-inlining):

val x: String = unsafeJavaApi(...)
val s: String = if (x == null) "" else x

That's pretty much the "lowest level" code possible.

nescala 2018

S

example: safe nullable

Differences between Safe and Option:

— Safe[String] is equivalent to String at runtime

— Safe(...) does not allocate instances, unlike Option(...)
— AnyRef constraint means Safe has no monad

— Safe[Safe[String]] does not type-check

— Safe does not have any methods defined

— modulo-inlining, Safe does not add overhead

nnnnn la 2018

40

example: safe nullable, enriched

opagque type Safel[A <: AnyRef] = A

object Safe {
def apply[A <: AnyRef](a: A): Safe[A] = a

implicit class Ops[A <: AnyRefl](na: Safel[A])
extends AnyVal {
def recover(a: A): A =
1T (na == null) a else na

nescala 2018

41

example: safe nullable, enriched

Code as-written by author:

val X
val vy

f(x, y)

Code as-compiled (post-inlining):

val x = {
val y = {

f(x, y)

nescala 2018

Safe(unsafeJavaApi(...)).recover(a)
Satfe(otherApi(...)).recover(b)

val na = unsafeJavaApi(...)
1T (na == null) a else na }
val nb = otherApi(...)

1f (nb == null) b else nb }

42

example: safe nullable, enriched

Q: Are the previous inlinings realistic?
A: We think so (more or less):

— methods like apply and recover are very small

— companion's methods are static, should inline well
— enrichment is where value classes work best

— opaque types' constraints allow optimization

nnnnn la 2018

43

example: type tagging

import scala.{specialized => sp}

// S @ T means that type S is tagged with tag T
opaque type @Q[S, T] = S

object @@ {
def tagl@sp S, T1(s: S): S @@ T =s
def untagl@sp S, T](st: S @@ T): S = st
def deepTagl[F[_], @p S, T1(fs: F[S]): FL[S @@ T] = fs
def deepUntag[F[_1, @sp S, T1(fst: FLS @@ T]): FLS] = fst

implicit def ord[S, T](implicit ev: Ordering[S]): Ordering[S @@ T] =
deepTag[Ordering, S, T1(ev)

}

nescala 2018

44

example: type tagging

import Tagged._
trait Meters
trait Feet

val x: Double @@ Meters
val y: Double @@ Meters
List(x, y).sorted //

val z: Double @@ Feet =

List(z, z).sorted //
List(x, y, z).sorted //

nescala 2018

= @@Q.tag[Double, Meters](30.0)
= @@.tag[Double, Meters](12.5)
ok: List(12.5, 30.0)

@@.tag[Double, Feet](1.0)

ok: List(1.0, 1.0)
fails, no Ordering[Any]

45

example: type tagging

Code as-compiled (post-inlining):

object @@ {
def tagl@sp S, Tl(s: S): S = s
def untag[@sp S, T](st: S): S = st

def deepTaglF[_]1, @sp S, T1(fs: F[S]): FLS] = fs
def deepUntaglF[_1, @sp S, T1(fst: F[S]): FL[S] = fst

implicit def ord[@sp S, T](implicit ev: Ordering[S]): Ordering[S] =
ev

nescala 2018 46

example: type tagging

Code as-compiled (post-inlining):

val x: Double = 30.0
val y: Double = 12.5

List(x, y).sorted // ok: List(12.5, 30.0)

val z: Double = 1.0
List(z, z).sorted // ok: List(1.0, 1.0)
List(x, y, z).sorted // fails, as shown before

nescala 2018

47

reasoning abhout erasure

Opaque types are opaque at compile-time.
But you can determine their runtime form:

— replace the LHS of an opaque type with its RHS

— inline methods from companion marked @inline

— that's it!

— (optional: inline all "simple" methods in companion)

nnnnn la 2018

48

reasoning abhout erasure

You can also run this logic in reverse:

— start with some "raw" code

— determine where you wish to limit access

— (or where you wish to improve the type guarantees)
— introduce opaqgue types there

— add methods to companion as necessary

nnnnn la 2018

49

reasoning abhout erasure

We often say that opaque types minimize boxing.

This is true but a better formulation might be:

> Opaque types do not introducing any boxing
> not already present in the underlying code.

nescala 2018

10

example: integer flags

opaque type Mode = Int

object Mode {
val Forbidden: Mode =
val Execute: Mode = 1
val Write: Mode = 2
val Read: Mode = 4

0

implicit class Ops(val lhs: Mode) extends AnyVal {
def &(rhs: Mode): Mode = lhs & rhs
def |(rhs: Mode): Mode = lhs | rhs
def toInt: Int = lhs

¥
¥

nescala 2018

example: integer flags

// 1invalid integers are impossible

// no Option, parsing, error-checking, etc.

val permissions = Mode.Read | Mode.Execute
// could support these methods directly 1in

// Mode companion instead of using .tolnt
grantUnixAccess(permissions.tolInt, ...)

nescala 2018

52

example: immutable arrays

opaque type IArray[A] = Arrayl[A]

object IArray {
@inline final def 1nit[@sp Al(body: => Array[Al): IArray[A] =
body
@inline final def size[@sp Al(ia: IArray[Al): Int =
1a.length
@inline final def get[@sp Al(ia: IArray[Al, i: Int): A =

1a(1)

nescala 2018 53

example: immutable arrays

Code as-written by author:

val xs: IArray[Long] = IArray.init { javaApi(...) }
var 1: Int = 0
while (1 < IArray.size(xs)) {

val x: Long = IArray.get(1i)

1 += 1

¥

Notice that xs cannot be mutated.

nescala 2018

54

example: immutable arrays

Code as-emitted by compiler:

val xs: Array[Long] = { javaApi(...) }
var 1: Int = 0
while (1 < xs.length) {

val x: Long = xs(1)

1 += 1

¥

This will operate on long[] and long as hoped.

nnnnn la 2018

55

Pros, cons,
and comparisons

nnnnn la 2018

56

what about value classes?

Value classes were introduced in 2.10:

— defined with extends AnyVal

— very specific class requirements

— can only extend universal traits

— avoids allocating objects in some cases

— intended to support zero-cost enrichment
— class still exists at runtime

nnnnn la 2018

S7

what about value classes?

Value classes have capabilities opaque types lack:

— able to define methods

— can be distinguished from underlying type at runtime
— can participate in subtyping relationships

— can override .toString and other methods

nnnnn la 2018

58

what about value classes?

However, value classes have some down sides too:

— unpredictable boxing

— constructor/accessor available by default

— cannot take advantage of specialization

— always allocates when used with arrays

— always allocates when used in a generic context

By contrast, opaque types are always erased.

nnnnn la 2018

S

value class boxing example

Here's a simple value class:

class S(val string: String) extends AnyVal {
def toLower: String = string.tolLowerCase
J

We want S to be compiled to String when possible.

nescala 2018

60

value class boxing example

When will S be treated as String? When will it box?

val s = new S("hi mom") //
new S("HI MOM").toLower //
class T(x: S) //
val t = new T(s) //

., x field 1s a String

©C O O O
AN AN A

val pair = (s, s) // boxes :/

val arr = Array(s, s) // boxes :(

val 1st = List(s, s) // boxes :/

val p: S => Boolean = // will box when called
(s: S) => s.string.isEmpty

JE&) // boxes :P

nescala 2018 61

opaque types unbhoxing example

Here's the same type as an opaque type:

opaque type S = String

object S {
def apply(str: String): S = str

implicit class Ops(val s: S) extends AnyVal {
def string: String = s
def toLower: String = s.tolLowerCase
J
J

nescala 2018

62

opaque types unbhoxing example

S will always be treated as a String:

val s = S("hi mom") // ok
S("HI MOM").toLower // ok
class T(x: S) // ok, 'x field is a String
val t = new T(s) // ok
val pair = (s, s) // ok, (String, String)
val arr = Array(s, s) // ok, Array[String]
val 1st = List(s, s) // ok, List[String]
K

val p: S => Boolean = // o
(s: S) => s.string.isEmpty
p(s) // ok

Function1[S, Boolean]

A J

nescala 2018

63

when to use value classes?

Value classes are best used:

— to provide low-cost enrichment
— in cases where traditional wrappers are needed

— in direct contexts (e.g. fields/transient values)

(In other cases, value classes may be more marginal.)

nnnnn la 2018

64

opaque type pros

Opaque types:

— work well with arrays

— work well with specialization

— avoid an "abstraction penalty”

— are useful for "subsetting” a type
— offer pleasing minimalism

nnnnn la 2018

65

opaque type cons

However, opague types also:

— require lots of boilerplate (especially wrappers)
— require a class anyway when doing enrichments
— do not act like traditional classes

— do not eliminate standard primitive boxing

— cannot participate in subtyping

nnnnn la 2018

66

conclusion

SIP-35 is moving quickly!

— Good feedback from last SIP meeting

— We're revising the SIP text

— Jorge continues to work on implemention.
— We're targeting Scala 2.13.

nnnnn la 2018

67

the end

Are you excited about SIP-35? Skeptical? Confused?

Let us know what you think!

Questions, use cases, and comments are very welcome!

Thanks!

nnnnn la 2018

68

