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who ami?

— typelevel member A
— maintain spire, cats, and other scala libraries
— interested in expressiveness and performance @

— ml-infra at stripe

code at: http://github.com/non
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disclaimer

1. This talk discusses potential changes to Scala.
2. The SIP has not yet been approved.
3. It's still possible the proposal will change.

Caveat emptor!
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overview

What we will cover:

1. Types, classes, and type aliases
2. SIP-35: opaque types

3. Motivation and various examples
4. Pros, cons, and comparisons
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Types, classes,
and type aliases
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types

What do you think Scala types are?
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types

What do you think Scala types are?

— methods of declaring memory locations
— tags attached to values at runtime

— java classes

— sets of values

— systems for constraining values

— things we write after the colon (e.g. x: Int)
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types

What do you think Scala types are?
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— java classes
— sets of values
— systems for constraining values

— things we write after the colon (e.g. x: Int)
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are types just classes?

String is definitely a type, and also a class.

Maybe this is right?
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are types just classes?

Consider the following code:
Pair[A](first: A, second: A)

It definitely produces a single class:

$ scalac Pair.scala && 1s -1
Pair.class
Pair.scala
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are types just classes?

Q: How many distinct types does Pair produce?

class Pair[A]l(first: A, second: A)
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are types just classes?

Q: How many distinct types does Pair produce?

class Pair[A]l(first: A, second: A)

A: Trick question!

Pair[Int], Pair[String], Pair[List[Doublel]l],
Pair[Pair[Boolean]], and so on...

Given any type T we can produce a new Pair[T].
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digression

Pair is a "parameterized type"

— also known as a "type constructor”

— given a type, it produces a type

— sometimes written informally as: x > *
— not a "proper type", it needs a parameter
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types

What do you think Scala types are?
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— sets of values

— systems for constraining values

— things we write after the colon (e.g. x: Int)
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sets of values?

sealed trait Duprass

sealed trait Minton

case object Horlick extends Minton with Duprass
case object Claire extends Minton with Duprass

val xs: List[Duprass] = List(Horlick, Claire)

val ys: List[Minton] = xs
// <console>:13: error: type mismatch;

// found : List[Duprass]
// required: List[Minton]
// val ys: List[Minton] = xs

// A
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types

What do you think Scala types are?
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— systems for constraining values
— things we write after the colon (e.g. x: Int)
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type aliases

Type aliases allow us to rename a type:

type TrueOrFalse = Boolean

val t1: TrueOrFalse = true
val t2: Boolean = t1 // ok
val t3: TrueOrFalse = t2 // also ok

Notice TrueOrFalse is the same as Boolean.
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type aliases

Type aliases can also introduce type constructors:

type AlwaysInt[A] = Int

type LeftOrRight[A] = Either[A, Al

type AssocRow[K, V] = List[(K, V)]
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type aliases

// toy example for illustration
case class User(uid: Long, gid: Long, name: String)

object Db {
def findById(u: Long): Option[User] = ...
def findByGroup(g: Long): List[User] = ...

¥

val Some(root) = Db.findById(0)
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type aliases

type UID = Long
type GID = Long
case class User(uid: UID, gid: GID, name: String)

object Db {
def findById(u: UID): Option[User] = ...
def findByGroup(g: GID): List[User] = ...

¥

val Some(root) = Db.findById(0) // still works
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type aliases

type UID = Long
type GID = Long
case class User(uid: UID, gid: GID, name: String)

object Db {
def findById(u: UID): Option[User] = ...
def findByGroup(g: GID): List[User] = ...

¥

val Some(root) = Db.findById(0) // still works
val weird = Db.findById(root.gid) // huh?
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type aliases

Type aliases:

— do not introduce new types

— are completely erased at compile-time
— can introduce type constructors

— can also adapt existing type constructors
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SIP-35
opaque types
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what's a SIP?

— stands for Scala Improvement Process

— formal proposal to change Scala

— specifies changes to Scala Language Specification
— also includes motivation, examples, etc.

— process has existed since 2012

— rebooted by Scala Center in mid-2016.
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sip-35

Co-authored by Jorge Vicente Cantero and Erik Osheim

TL;DR:

> This 1s a proposal to introduce syntax
> for type aliases that only exist at
> complle time and emulate wrapper types.

https://docs.scala-lang.org/sips/opaque-types.html

(This document is still evolving, will likely change.)
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what does sip-35 mean?

It's easiest to compare opaque types with type aliases.
Type aliases are transparent:

— code can "see through" type aliases in proper types
— authors can inline aliases present in proper types
— aliases do not introduce new types

— are completely erased before runtime

— do not produce classes
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what does sip-35 mean?

Opaque types are... well... opaque:

— code cannot see through an opaque type
— authors cannot inline opaque types

— opaqgue types do introduce new types

— are still completely erased before runtime
— still do not produce classes
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let's take a look!

Here's an opaque type to go along with our
earlier example:

opague UID =

That's it!
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well... maybe not

How do you produce a value of type UID?

opaque type UID = Long

val ul: UID = 0L // fails
val u2: UID = new UID(OL) // nope
val u3: UID = UID(OL) // still no
val ud: UID = 0OL.asInstanceOf[UID] // cheater!
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location is everything!

How do you produce a value of type UID?

opaque type UID = Long

object UID {
val ul: UID = QL // ok

¥

val u2: UID = Q0L // not ok
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location is everything!

— opaque types may have companion objects

— within this companion opaque types are transparent
— constructors, accesors, and extractors must go there
— otherwise, no access is permitted
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what is erasure?

Consider the following:

val 1st: List[Any] = List(1, "two", 3.0)
Ist.foreach(println)

// 1
// two
// 3.0

We used toString and println to "recover”
type information from lst.
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what is erasure?

However, opaque types are different:

List(UID.ul, 1.0, "two").foreach(println)
// 0

// 1.0
// two

List(oL, 1.0, "two").foreach(println)
// 0

// 1.0

// two
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what is erasure?

— Erasure "erases" type information
— UID and Long are indistinguishable at runtime
— opaque types cannot override methods (e.g. toString)
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Motivation and
various examples
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motivation

introduce types without classes.
. give authors more control over erasure.
. predictable runtime representation/performance

> W Nnp S

. limit access to existing classes/types

nnnnn la 2018

36



example: safe nullable

Code as-written by author:

opaque type Safel[A <: AnyRef] = A

object Safe {
def apply[A <: AnyRef](a: A): Safel[A] = a

def recover[A <: AnyRefl(na: Safel[A], a: A): A =
1T (na == null) a else na

def bind[B <: AnyRef ]J(nha: Safe[Al],
f: A => Safe[B]): Safe[B] =
1f (na == null) null else f(na)
J
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example: safe nullable

Code as-emitted by compiler:

object Safe {
def apply[A <: AnyRef](a: A): A = a

def recover[A <: AnyRef](na: A, a: A): A =
1T (na == null) a else na

def bind[B <: AnyRefl(na: A, f: A => B): B =
1f (na == null) null else f(na)
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example: safe nullable

Code as-written by author:

val x: SafelString] = Safe(unsafeJavaApi(...))
val s: String = Safe.recover(x, "")

Code as-compiled (post-inlining):

val x: String = unsafeJavaApi(...)
val s: String = if (x == null) "" else x

That's pretty much the "lowest level" code possible.
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example: safe nullable

Differences between Safe and Option:

— Safe[String] is equivalent to String at runtime

— Safe(...) does not allocate instances, unlike Option(...)
— AnyRef constraint means Safe has no monad

— Safe[Safe[String]] does not type-check

— Safe does not have any methods defined

— modulo-inlining, Safe does not add overhead
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example: safe nullable, enriched

opagque type Safel[A <: AnyRef] = A

object Safe {
def apply[A <: AnyRef](a: A): Safe[A] = a

implicit class Ops[A <: AnyRefl](na: Safel[A])
extends AnyVal {
def recover(a: A): A =
1T (na == null) a else na

nescala 2018

41



example: safe nullable, enriched

Code as-written by author:

val X
val vy

f(x, y)

Code as-compiled (post-inlining):

val x = {
val y = {

f(x, y)

nescala 2018

Safe(unsafeJavaApi(...)).recover(a)
Satfe(otherApi(...)).recover(b)

val na = unsafeJavaApi(...)
1T (na == null) a else na }
val nb = otherApi(...)

1f (nb == null) b else nb }
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example: safe nullable, enriched

Q: Are the previous inlinings realistic?
A: We think so (more or less):

— methods like apply and recover are very small

— companion's methods are static, should inline well
— enrichment is where value classes work best

— opaque types' constraints allow optimization
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example: type tagging

import scala.{specialized => sp}

// S @ T means that type S is tagged with tag T
opaque type @Q[S, T] = S

object @@ {
def tagl@sp S, T1(s: S): S @@ T =s
def untagl@sp S, T](st: S @@ T): S = st
def deepTagl[F[_], @p S, T1(fs: F[S]): FL[S @@ T] = fs
def deepUntag[F[_1, @sp S, T1(fst: FLS @@ T]): FLS] = fst

implicit def ord[S, T](implicit ev: Ordering[S]): Ordering[S @@ T] =
deepTag[Ordering, S, T1(ev)

}
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example: type tagging

import Tagged._
trait Meters
trait Feet

val x: Double @@ Meters
val y: Double @@ Meters
List(x, y).sorted //

val z: Double @@ Feet =

List(z, z).sorted //
List(x, y, z).sorted //

nescala 2018

= @@Q.tag[Double, Meters](30.0)
= @@.tag[Double, Meters](12.5)
ok: List(12.5, 30.0)

@@.tag[Double, Feet](1.0)

ok: List(1.0, 1.0)
fails, no Ordering[Any]
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example: type tagging

Code as-compiled (post-inlining):

object @@ {
def tagl@sp S, Tl(s: S): S = s
def untag[@sp S, T](st: S): S = st

def deepTaglF[_]1, @sp S, T1(fs: F[S]): FLS] = fs
def deepUntaglF[_1, @sp S, T1(fst: F[S]): FL[S] = fst

implicit def ord[@sp S, T](implicit ev: Ordering[S]): Ordering[S] =
ev
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example: type tagging

Code as-compiled (post-inlining):

val x: Double = 30.0
val y: Double = 12.5

List(x, y).sorted // ok: List(12.5, 30.0)

val z: Double = 1.0
List(z, z).sorted // ok: List(1.0, 1.0)
List(x, y, z).sorted // fails, as shown before
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reasoning abhout erasure

Opaque types are opaque at compile-time.
But you can determine their runtime form:

— replace the LHS of an opaque type with its RHS

— inline methods from companion marked @inline

— that's it!

— (optional: inline all "simple" methods in companion)

nnnnn la 2018

48



reasoning abhout erasure

You can also run this logic in reverse:

— start with some "raw" code

— determine where you wish to limit access

— (or where you wish to improve the type guarantees)
— introduce opaqgue types there

— add methods to companion as necessary
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reasoning abhout erasure

We often say that opaque types minimize boxing.

This is true but a better formulation might be:

> Opaque types do not introducing any boxing
> not already present in the underlying code.
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example: integer flags

opaque type Mode = Int

object Mode {
val Forbidden: Mode =
val Execute: Mode = 1
val Write: Mode = 2
val Read: Mode = 4

0

implicit class Ops(val lhs: Mode) extends AnyVal {
def &(rhs: Mode): Mode = lhs & rhs
def |(rhs: Mode): Mode = lhs | rhs
def toInt: Int = lhs

¥
¥
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example: integer flags

// 1invalid integers are impossible

// no Option, parsing, error-checking, etc.

val permissions = Mode.Read | Mode.Execute
// could support these methods directly 1in

// Mode companion instead of using .tolnt
grantUnixAccess(permissions.tolInt, ...)
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example: immutable arrays

opaque type IArray[A] = Arrayl[A]

object IArray {
@inline final def 1nit[@sp Al(body: => Array[Al): IArray[A] =
body
@inline final def size[@sp Al(ia: IArray[Al): Int =
1a.length
@inline final def get[@sp Al(ia: IArray[Al, i: Int): A =

1a(1)
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example: immutable arrays

Code as-written by author:

val xs: IArray[Long] = IArray.init { javaApi(...) }
var 1: Int = 0
while (1 < IArray.size(xs)) {

val x: Long = IArray.get(1i)

1 += 1

¥

Notice that xs cannot be mutated.
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example: immutable arrays

Code as-emitted by compiler:

val xs: Array[Long] = { javaApi(...) }
var 1: Int = 0
while (1 < xs.length) {

val x: Long = xs(1)

1 += 1

¥

This will operate on long[] and long as hoped.
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Pros, cons,
and comparisons
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what about value classes?

Value classes were introduced in 2.10:

— defined with extends AnyVal

— very specific class requirements

— can only extend universal traits

— avoids allocating objects in some cases

— intended to support zero-cost enrichment
— class still exists at runtime
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what about value classes?

Value classes have capabilities opaque types lack:

— able to define methods

— can be distinguished from underlying type at runtime
— can participate in subtyping relationships

— can override .toString and other methods
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what about value classes?

However, value classes have some down sides too:

— unpredictable boxing

— constructor/accessor available by default

— cannot take advantage of specialization

— always allocates when used with arrays

— always allocates when used in a generic context

By contrast, opaque types are always erased.
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value class boxing example

Here's a simple value class:

class S(val string: String) extends AnyVal {
def toLower: String = string.tolLowerCase
J

We want S to be compiled to String when possible.
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value class boxing example

When will S be treated as String? When will it box?

val s = new S("hi mom") //
new S("HI MOM").toLower //
class T(x: S) //
val t = new T(s) //

., x field 1s a String

©C O O O
AN AN A

val pair = (s, s) // boxes :/

val arr = Array(s, s) // boxes :(

val 1st = List(s, s) // boxes :/

val p: S => Boolean = // will box when called
(s: S) => s.string.isEmpty

JE&) // boxes :P
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opaque types unbhoxing example

Here's the same type as an opaque type:

opaque type S = String

object S {
def apply(str: String): S = str

implicit class Ops(val s: S) extends AnyVal {
def string: String = s
def toLower: String = s.tolLowerCase
J
J
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opaque types unbhoxing example

S will always be treated as a String:

val s = S("hi mom") // ok
S("HI MOM").toLower // ok
class T(x: S) // ok, 'x field is a String
val t = new T(s) // ok
val pair = (s, s) // ok, (String, String)
val arr = Array(s, s) // ok, Array[String]
val 1st = List(s, s) // ok, List[String]
K

val p: S => Boolean = // o
(s: S) => s.string.isEmpty
p(s) // ok

Function1[S, Boolean]

A J
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when to use value classes?

Value classes are best used:

— to provide low-cost enrichment
— in cases where traditional wrappers are needed

— in direct contexts (e.g. fields/transient values)

(In other cases, value classes may be more marginal.)
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opaque type pros

Opaque types:

— work well with arrays

— work well with specialization

— avoid an "abstraction penalty”

— are useful for "subsetting” a type
— offer pleasing minimalism
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opaque type cons

However, opague types also:

— require lots of boilerplate (especially wrappers)
— require a class anyway when doing enrichments
— do not act like traditional classes

— do not eliminate standard primitive boxing

— cannot participate in subtyping
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conclusion

SIP-35 is moving quickly!

— Good feedback from last SIP meeting

— We're revising the SIP text

— Jorge continues to work on implemention.
— We're targeting Scala 2.13.
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the end

Are you excited about SIP-35? Skeptical? Confused?

Let us know what you think!

Questions, use cases, and comments are very welcome!

Thanks!
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