
Functions and
Determinism
in Property-based Testing
Erik Osheim (@d6)

Philly ETE 2017 1

who am i?

— typelevel member λ
— maintain spire, cats, and other scala libraries1

— interested in expressiveness and performance ☯

— support machine learning at stripe

code at: http://github.com/non

1 ScalaCheck co-maintainer as of Monday!

Philly ETE 2017 2

what will this talk cover?

1. property-based testing overview ♖
2. scalacheck case studies ☏

3. dive into generators ☟
4. deterministic function generation λ
5. some take-aways about laws and generators ⛭
6. enthusiasm for testing! ☀

Philly ETE 2017 3

overview

Philly ETE 2017 4

origin story

The paper that launched a thousand implementations:

"QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs" (ICFP 2000)

by Koen Claessen and John Hughes

Introduces properties and generators, with a mention of
shrinking as well.

Philly ETE 2017 5

in all languages 2

— Haskell: QuickCheck, SmallCheck, LeanCheck, Hedgehog
— Scala: ScalaCheck, Scalaprops, Sonic
— Python: Hypothesis
— Clojure: test.check
— Java: junit-quickcheck
— C: Theft
— Javascript: qc.js
— Rust: QuickCheck for Rust
— Go: Gopter

2 Most languages have more than one library, this is a semi-curated subset.

Philly ETE 2017 6

the basic idea

The basic unit is a property:

— Essentially a function that returns Boolean
— Properties must be true for all valid inputs: ∀x.P(x)

— Thus, one false result disproves the property
— In most cases we can't exhausively test a property

Property-based tests search for counter-examples.

Philly ETE 2017 7

false positives

Most properties are possibly true or definitely false.

 ∀x P(x) = ¬∃x ¬P(x) -- predicate is true
 ¬∀x P(x) = ∃x ¬P(x) -- predicate is false

"Program testing can be used to show the presence of bugs,
but never to show their absence!"

Dijkstra (1970) "Notes On Structured Programming"

Philly ETE 2017 8

in practice

To test a property we:

— choose how many passing cases we want
— generate that many test cases3

— evaluate our property for each case

The property is falsified (test fails) if any test case fails.

3 Hopefully the tests cases we generate are mostly distinct.

Philly ETE 2017 9

in practice

We can base our confidence on the number of passing
test cases.

— Run fewer interactively to keep things snappy
— Run many more in CI (e.g. Travis) for peace of mind

100 test cases give us a bit of confidence...

...but with 10k we have (up to) 100x as much confidence.

Philly ETE 2017 10

case studies

Philly ETE 2017 11

case 1: archery

Archery is an immutable 2D R-Tree implementation.

http://github.com/meetup/archery

R-Trees were first proposed in:

"R-Trees: A Dynamic Index Structure for
Spatial Searching"
Antonin Guttman (SIGMOD 1984)

We'll look at how Archery tests its core algorithm.

Philly ETE 2017 12

property("rtree.nearestK works") {
 forAll { (es: List[Entry[Int]], p: Point, k0: Int) =>
 val k = (k0 % 1000).abs // ensure k is 0-999
 val rt = build(es) // build an RTree[Int]

 // map each geometry in `es` to its distance from `p`.
 // then sort and find the closest `k` geometries.
 val expected = es.map(_.geom.distance(p))
 .sorted.take(k).toVector

 // find the closest `k` geometries using the RTree
 val got = rt.nearestK(p, k).map(_.geom.distance(p))

 got shouldBe expected // these results should agree
 }
}

Philly ETE 2017 13

case 1: archery

Bugs this has caught, or could catch:

— Broken R-Tree generation (build)
— Broken searching (nearestK)
— Duplicate entries at same point ignored
— Searching for nearest 0 points could crash

Philly ETE 2017 14

case 2: jawn

Jawn is a pluggable JSON parser.

Used by other JSON libraries, such as Circe.

https://github.com/non/jawn

We'll look at how Jawn tests its parser/renderer.

Philly ETE 2017 15

property("idempotent parsing/rendering") {
 forAll { value1: JValue =>
 val json1 = CanonicalRenderer.render(value1)
 val value2 = JParser.parseFromString(json1).get
 val json2 = CanonicalRenderer.render(value2)

 json2 shouldBe json1
 json2.## shouldBe json1.##

 value1 shouldBe value2
 value1.## shouldBe value2.##

 parser.Util.withTemp(json1) { t =>
 JParser.parseFromFile(t).get shouldBe value2
 }
 }
}

Philly ETE 2017 16

case 2: jawn

Bugs this has caught, or could catch:

— assorted parser bugs
— assorted rendering bugs
— parse → render changes data (e.g. 9 vs 9.0)
— broken equality on JValue
— broken hashCode on JValue
— parsing from files and strings differs

Philly ETE 2017 17

case 3: spire

Spire is a numeric library for Scala which is intended to
be generic, fast, and precise.

http://github.com/non/spire

In this example we'll look at Spire's Interval type.

Philly ETE 2017 18

def testUnop(
 f: Interval[Rational] => Interval[Rational],
 g: Rational => Rational): Unit = {
 forAll { (orig: Interval[Rational]) =>
 val modified = f(a)
 sample(orig, 100).forall { x =>
 modified.contains(g(x)) shouldBe True
 }
 }
}

property("sampled unop pow(2)")(testUnop(_.pow(2), _.pow(2)))
property("sampled unop pow(3)")(testUnop(_.pow(3), _.pow(3)))

Philly ETE 2017 19

case 4: CountVectorizer

Converts a text feature into counts, including N-grams.

We are testing code that identifies all N-grams in a text.

val iter = "abcde".iterator.map(_.toString)
val it = new NGramIterator(it, 2, 3, None)
it.toList // List(ab, bc, abc, cd, bcd, de, cde)

(This test is taken from a project at Stripe.)

Philly ETE 2017 20

"work with any sequence" in {
 forAll { (data: NGramIteratorData) =>
 val NGramIteratorData(str, minN, maxN) = data

 val expected = (minN to maxN).flatMap { n =>
 iter(str).sliding(n).map(_.mkString(""))
 }

 val it = new NGramIterator(iter(str), minN, maxN, _ + _)
 val actual = it.toList.sortBy(_.length)
 assert(actual == expected)
 }
}

Philly ETE 2017 21

case study summary

Types of tests we saw:

— Laws (e.g. idempotence, associativity, etc.)
— Parallel evaluation (e.g. fast vs slow-but-correct)
— Spot checking (e.g. sampling inside the interval)
— Just exercising the code
— Forcing us to think a bit about how we test

Philly ETE 2017 22

what are we missing?

Consider:

property("idempotent parsing/rendering") {
 forAll { value1: JValue =>
 ...
 }
}

The big question: how did we get a JValue to begin with?

Philly ETE 2017 23

generators

Philly ETE 2017 24

⚠ WARNING ⚠

What follows is a simplified view of ScalaCheck.

The simplification ellides:

— efficiency concerns
— crufty, legacy API details
— important features which we don't need
— the larger ScalaCheck framework

Later we'll compare ScalaCheck's Gen with this one.

Philly ETE 2017 25

anatomy of a generator

The core idea: generate random values.

// given a source of randomness,
// produce an A value.
case class Gen[A](run: Rng => A)

object Gen {
 def const[A](a: A): Gen[A] = Gen(_ => a)
}

Philly ETE 2017 26

anatomy of a generator

The core idea: generate random values reproducibly.

// given a source of randomness,
// produce an A value and an updated source.
case class Gen[A](run: Rng => (A, Rng))

object Gen {
 def const[A](a: A): Gen[A] = Gen(r => (a, r))
}

Philly ETE 2017 27

anatomy of a generator

The core idea: generate random values reproducibly.

// given a source of randomness,
// produce an A value and an updated source.
case class Gen[A](run: Rng => (A, Rng))

object Gen {
 def const[A](a: A): Gen[A] = Gen(r => (a, r))
}

(pay no attention to the state monad behind the curtain.)

Philly ETE 2017 28

why determinism?

— easier to reason about what is happening
— ensure test code is independent of test
— reproducible tests and test cases
— concurrent/parallel test evaluation
— can break rules if needed (e.g. in the REPL)

what do you think?

Philly ETE 2017 29

anatomy of a random-number generator

Here's an RNG sufficient for demo purposes:

// donald knuth's 64-bit MMIX rng
case class Rng(seed: Long) {
 def next: Rng = Rng(
 seed *
 6364136223846793005L +
 1442695040888963407L)
}

Philly ETE 2017 30

anatomy of a random-number generator

Rng represents a position in an immutable sequence:

object Rng {
 def random: Rng = {
 val seed: Long = scala.util.Random.nextLong
 Rng(seed)
 }
}

val rng0 = Rng.random // Rng(312107151824040236)
val rng1 = rng0.next // Rng(2643567112438381067)
val rng2 = rng1.next // Rng(3536375599844977214)
val rng3 = rng2.next // Rng(-8652326046818176971)
// and so on...

Philly ETE 2017 31

anatomy of a random-number generator

It's a relatively small step to a stream of bytes:

val rng0 = Rng.random
val stream = Stream.iterate(rng0, 6)(r => r.next)
// Stream(Rng(1344895957756080708), ?)

val bytes = stream.map(r => r.seed.toByte)
bytes.toList
// List(4, 3, -42, -19, -8, -25)

Philly ETE 2017 32

simple generators

Simple generators can extract values from seeds:

val long: Gen[Long] =
 Gen(r => (r.seed, r.next))

val bool: Gen[Boolean] =
 Gen(r => (r.seed >= 0, r.next))

val char: Gen[Char] =
 Gen(r => (r.seed.toChar, r.next))

Notice we return r.next to move along the RNG sequence!

Philly ETE 2017 33

simple generators

Even some "simple" generators are a bit fancy:

// doubles in the range [0, 1).
// e.g. (-1L >>> 11) * const = 0.9999999999999999
val double: Gen[Double] =
 Gen { r =>
 val shifted = r.seed >>> 11 // upper 53-bits
 val const = 1.1102230246251565e-16 // magic number
 val x = shifted * const // 0.0 <= x < 1.0
 (x, r.next)
 }

Philly ETE 2017 34

simple generators

Boilerplate alert!

We're always returning r.next in addition to our value:

val bool: Gen[Boolean] =
 Gen(r => (r.seed >= 0, r.next))

val char: Gen[Char] =
 Gen(r => (r.seed.toChar, r.next))

Seems like we could be a bit more expressive, right?

Philly ETE 2017 35

introducing map

We can use a map method to remove this kind of
boilerplate!

case class Gen[A](run: Rng => (A, Rng)) { self =>
 def map[B](f: A => B): Gen[B] =
 Gen { rng0 =>
 val (a, rng1) = self.run(rng0)
 (f(a), rng1)
 }
}

Philly ETE 2017 36

simple generators (revisited)

val bool: Gen[Boolean] =
 long.map(_ >= 0) // using the original long generator

val double: Gen[Double] =
 long.map(x => (x >>> 11) * 1.1102230246251565e-16)

def upTo(limit: Int): Gen[Int] =
 double.map(x => (x * limit).toInt) // 0 <= _ < n

def oneIn(chance: Int): Gen[Boolean] =
 upTo(chance).map(_ == 0) // true 1-in-chance times

Philly ETE 2017 37

testing it out!

case class Gen[A](apply: Rng => (A, Rng)) {

 ...

 // impure! only do these from a REPL!

 def sample: A =
 run(Rng.random)._1

 def take(n: Int): List[A] =
 (1 to n).map(_ => sample).toList
}

Philly ETE 2017 38

testing it out!

val d6 = upTo(6).map(_ + 1) // uniform values 1-6
val samples = d6.take(10000) // 10k random samples

val histogram = samples.groupBy(x => x).mapValues(_.size)
histogram.toList.sorted.foreach(println)
// (1,1656)
// (2,1646)
// (3,1629)
// (4,1699)
// (5,1706)
// (6,1664)

Philly ETE 2017 39

simple generators (summary)

What did we learn so far?

— it works! (at least in the REPL)
— map and long are enough for simple generators
— our RNG is mostly implicit (usually a good thing!)
— we should be explicit about distribution and range
— requires relatively small kernel of functionality

Philly ETE 2017 40

simple generators (summary)

What have we left out so far?

— generators with type parameters
— generators that need more than 64-bits of entropy
— lists and other collections
— correctly threading RNG state
— functions and other exotic types

Philly ETE 2017 41

fancy generators

Let's start with a generator we need: Gen[List[A]].

(We need this to write a better take method on Gen.)

Our gameplan:

— use generators recursively
— thread RNG state through appropriately
— profit!

Philly ETE 2017 42

fancy generators

If we're careful, we can generate lists:

// generate a list of n random values
def fixedList[A](gen: Gen[A], n: Int): Gen[List[A]] =
 if (n <= 0) Gen.const(Nil)
 else Gen { rng0 =>
 val (head, rng1) = gen.run(rng0)
 val (tail, rng2) = fixedList(gen, n - 1).run(rng1)
 (head :: tail, rng2)
 }

Philly ETE 2017 43

fancy generators

And we can use these to get even fancier:

// generate a randomly-sized list of random values
def list[A](gen: Gen[A], sized: Gen[Int]): Gen[List[A]] =
 Gen { rng0 =>
 val (n, rng1) = sized.run(rng0)
 fixedList(gen, n).run(rng1)
 }

As before, it seems like we should be able to simplify.

Philly ETE 2017 44

introducing flatMap

Did you see this coming?

case class Gen[A](run: Rng => (A, Rng)) { self =>

 ...

 def flatMap[B](f: A => Gen[B]): Gen[B] =
 Gen { rng0 =>
 val (a, rng1) = self.run(rng0)
 val gb: Gen[B] = f(a)
 gb.run(rng1)
 }
}

Philly ETE 2017 45

fancy generators (revisited)

// generate a list of n random values
def fixedList[A](gen: Gen[A], n: Int): Gen[List[A]] =
 if (n <= 0) Gen.const(Nil)
 else gen.flatMap { a =>
 fixedList(gen, n - 1).map(as => a :: as)
 }

 // i.e.
 // for {
 // a <- gen
 // as <- fixedList(gen, n - 1)
 // } yield a :: as

Philly ETE 2017 46

fancy generators (revisited)

This one gets even nicer:

def list[A](gen: Gen[A], sized: Gen[Int]): Gen[List[A]] =
 sized.flatMap(n => fixedList(gen, n))

flatMap unlocks the power of A => Gen[B] methods:

 def upTo(n: Int): Gen[Int]

 def oneIn(n: Int): Gen[Boolean]

Philly ETE 2017 47

even more generators

def option[A](g: Gen[A]): Gen[Option[A]] =

 oneIn(10).flatMap { isNone => // 10/90% none/some

 if (isNone) Gen.const(None) else g.map(a => Some(a))

 }

def either[A, B](ga: Gen[A], gb: Gen[B]): Gen[Either[A, B]] =

 oneIn(2).flatMap { // 50/50% left/right

 case true => gb.map(b => Right(b))

 case false => ga.map(a => Left(a))

 }

def pair[A, B](ga: Gen[A], gb: Gen[B]): Gen[(A, B)] =

 ga.flatMap(a => gb.map(b => (a, b)))

Philly ETE 2017 48

so many generators!

def set[A](g: Gen[A]): Gen[Set[A]] =
 list(g, upTo(64)).map(_.toSet)

def vector[A](g: Gen[A]): Gen[Vector[A]] =
 list(g, upTo(64)).map(_.toVector)

val string: Gen[String] =
 list(char, upTo(32)).map(_.mkString)

def map[A](g: Gen[A]): Gen[Map[String, A]] =
 list(pair(string, g), upTo(64)).map(pairs => pairs.toMap)

Philly ETE 2017 49

fancy generator (summary)

What did we learn this time?

— flatMap is amazingly powerful! ✴
— we built product types (e.g. tuples, case classes)
— we built sum types (e.g. either, option)
— we built collections (e.g. set, vector, map)
— is there anything we can't do? ♫

Philly ETE 2017 50

a challenger appears!

What about Gen[A => B]?

Can we write a generator for function values?

Philly ETE 2017 51

a challenger appears!

What about Gen[A => B]?

Can we write a generator for function values?

What do you think?

Philly ETE 2017 52

pu!ing the lazy in fp

Here's one that is technically "correct":

def constFunction[A, B](gb: Gen[B]): Gen[A => B] =
 gb.map { b =>
 (a: A) => b
 }

(But we only generate constant functions!)

Philly ETE 2017 53

pu!ing the lazy in fp

val function: Int => Double =
 constFunction(double).sample

val values = (1 to 100).map(function)
values.toSet // Set(0.6081705385711283)

Unfortunately, these aren't very useful.

Let's try again.

Philly ETE 2017 54

principles are for other people

def wildFunction[A, B](gb: Gen[B]): Gen[A => B] = {

 // HACK: sample uses a random Rng value

 def wild(a: A): B = gb.sample

 Gen.const(wild)

}

At least they aren't constant functions!

Philly ETE 2017 55

principles are for other people

Let's see:

val function: Int => Boolean =
 wildFunction(bool).sample

val values = (1 to 5).map(_ => function(0))
// Vector(true, true, false, true, false)

They aren't constant functions,
because they aren't functions at all! !

Philly ETE 2017 56

hmmmm.

Are we stuck?

Philly ETE 2017 57

taking a step back

In both cases, we required a Gen[B].

But we don't have anything mentioning A.
(We don't need Gen[A]; we won't generate A values.)

What gives?

Philly ETE 2017 58

taking a step back

Recall, that Gen[B] is basically:

 Rng => (B, Rng) // consume rng state to generate B

Philly ETE 2017 59

taking a step back

Recall, that Gen[B] is basically:

 Rng => (B, Rng) // consume rng state to generate B

We sort of want the opposite, right?

 ??????????????? // ???????????????????????????????

Philly ETE 2017 60

taking a step back

Recall, that Gen[B] is basically:

 Rng => (B, Rng) // consume rng state to generate B

We sort of want the opposite, right?

 ??????????????? // ???????????????????????????????

When in doubt, reverse things!

Philly ETE 2017 61

taking a step back

Recall, that Gen[B] is basically:

 Rng => (B, Rng) // consume rng state to generate B

We sort of want the opposite, right?

 ??????????????? // consume A to generate rng state

When in doubt, reverse things!

Philly ETE 2017 62

taking a step back

Recall, that Gen[B] is basically:

 Rng => (B, Rng) // consume rng state to generate B

We sort of want the opposite, right?

 (A, Rng) => Rng // consume A to generate rng state

When in doubt, reverse things!

Philly ETE 2017 63

leap of faith

It's not totally clear yet, but let's go with it!

case class Cogen[A](rewind: (A, Rng) => Rng)

val clong: Cogen[Long] =
 Cogen { (n, rng0) =>
 val rng1 = Rng(rng0.seed ^ n) // xor n with the seed
 rng1.next // get the next value in the sequence
 }

So now what?

Philly ETE 2017 64

explore the space

Can we plug these things together?

val cogen: Cogen[Long] = clong
val gen: Gen[Bool] = bool

def combined(rng0: Rng, n: Long): Bool = {
 val rng1 = cogen.rewind(n, rng0)
 gen.run(rng1)._1
}

Interesting... let's keep going!

Philly ETE 2017 65

explore the space

// (Rng, Long) => Bool
def combined(rng0: Rng, n: Long): Boolean = {
 val rng1 = cogen.rewind(n, rng0)
 gen.run(rng1)._1
}

Philly ETE 2017 66

explore the space

// (Rng, Long) => Bool
def combined(rng0: Rng, n: Long): Boolean = {
 val rng1 = cogen.rewind(n, rng0)
 gen.run(rng1)._1
}

// curry it into Rng => (Long => Boolean)
def recombined(rng0: Rng): Long => Boolean =
 { (n: Long) =>
 val rng1 = cogen.rewind(n, rng0)
 gen.run(rng1)._1
 }

Philly ETE 2017 67

let's try it!

val inputs = (1L to 5L)

// make sure f is deterministic
val f = recombined(Rng.random) // generate a function
inputs.map(f) // Vector(false, false, true, false, true)
inputs.map(f) // Vector(false, false, true, false, true)

// see if g is distinct and deterministic
val g = recombined(Rng.random) // generate another one
inputs.map(g) // Vector(false, true, false, true, false)
inputs.map(g) // Vector(false, true, false, true, false)

It appears to work!

Philly ETE 2017 68

polishing it up

So, our working Gen[A => B] looks like this:

def function[A, B](ca: Cogen[A], gb: Gen[B]): Gen[A => B] =
 Gen { rng0 =>
 def f(a: A): B = {
 val rng1 = ca.rewind(a, rng0)
 gb.run(rng1)._1
 }
 (f, rng0.next)
 }

Philly ETE 2017 69

tying up loose ends

We have Cogen[Long], but how do we make others?

Philly ETE 2017 70

tying up loose ends

We have Cogen[Long], but how do we make others?

case class Cogen[A](rewind: (A, Rng) => Rng) {
 def contramap[Z](f: Z => A): Cogen[Z] =
 Cogen((z, rng) => rewind(f(z), rng))
}

Philly ETE 2017 71

tying up loose ends

We have Cogen[Long], but how do we make others?

case class Cogen[A](rewind: (A, Rng) => Rng) {
 def contramap[Z](f: Z => A): Cogen[Z] =
 Cogen((z, rng) => rewind(f(z), rng))
}

val cbool: Cogen[Boolean] =
 clong.contramap(b => if (b) 1L else 0L)

Philly ETE 2017 72

tying up loose ends

val cint: Cogen[Int] =
 clong.contramap(x => x.toLong)

val cdouble: Cogen[Double] =
 clong.contramap(java.lang.Double.doubleToLongBits)

def clist[A](ca: Cogen[A]): Cogen[List[A]] =
 Cogen { (as, r0) =>
 as.foldLeft(r0)((r, a) => ca.rewind(a, r))
 }

Philly ETE 2017 73

turn it up to 11

val cogen: Cogen[List[Int]] = clist(cint)
val gen: Gen[List[Double]] = fixedList(double, 2)

val f: List[Int] => List[Double] =
 function(cogen, gen).sample

f(List(1,2,3)) // List(0.5494955859425557, 0.2120041015556522)
f(List(4, 5, 6)) // List(0.28665305811674324, 0.4006829927716514)
f(Nil) // List(0.711467620936595, 0.24249997986473848)

Philly ETE 2017 74

Back to the Real World™

Philly ETE 2017 75

jawn, revisited

val jnull = Gen.const(JNull)

val jboolean = Gen.oneOf(JTrue, JFalse)

val jlong = arbitrary[Long].map(LongNum(_))

val jdouble = arbitrary[Double].filter(isFinite).map(DoubleNum(_))

val jstring = arbitrary[String].map(JString(_))

// Totally unscientific atom frequencies.

val jatom: Gen[JAtom] =

 Gen.frequency(

 (1, jnull),

 (8, jboolean),

 (8, jlong),

 (8, jdouble),

 (16, jstring))

Philly ETE 2017 76

jawn, revisited

def jarray(lvl: Int): Gen[JArray] =

 Gen.containerOf[Array, JValue](jvalue(lvl + 1)).map(JArray(_))

def jitem(lvl: Int): Gen[(String, JValue)] =

 for { s <- arbitrary[String]; j <- jvalue(lvl) } yield (s, j)

def jobject(lvl: Int): Gen[JObject] =

 Gen.containerOf[Vector, (String, JValue)](jitem(lvl + 1))

 .map(JObject.fromSeq)

def jvalue(lvl: Int = 0): Gen[JValue] =

 if (lvl >= MaxLevel) jatom

 else Gen.frequency((16, jatom), (1, jarray(lvl)), (2, jobject(lvl)))

Philly ETE 2017 77

how does Gen really work?

ScalaCheck's Gen is a bit more complicated:

type Gen[A] = (Params, Rng) => R[A]

type Params = ... // currently just a "size" parameter

type R[A] = (Option[A], Rng, ...)

Philly ETE 2017 78

how does Gen really work?

ScalaCheck's Gen is a bit more complicated:

type Gen[A] = (Params, Rng) => R[A]

type Params = ... // currently just a "size" parameter

type R[A] = (Option[A], Rng, ...)

Wait, Option[A]?? What!??

Philly ETE 2017 79

the other shoe

ScalaCheck allows generators to fail.

This is used to support things like filtering:

val positiveInt: Gen[Int] =
 arbitrary[Int].filter(_ > 0)

This is looks useful, right?

Philly ETE 2017 80

a terrible price

There is a downside:

"Gave up after only 32 passed tests. 162 tests were discarded."

Philly ETE 2017 81

a terrible price

There is a downside:

"Gave up after only 32 passed tests. 162 tests were discarded."

When a generator returns None, ScalaCheck discards
that case and starts over.

After enough discarded cases, ScalaCheck gives up on
the property. ☃

Philly ETE 2017 82

a terrible price

Additionally, partial generators totally break Gen[A => B].

We relied on gen.run(r) always producing a B value.

So what does ScalaCheck do?

Philly ETE 2017 83

so...?

As of 1.13.x, ScalaCheck's Gen instances avoid filter.

At times we will "spin" to try to get a value:

def doPureApply(p: P, seed: Seed, retries: Int = 100): Gen.R[T] = {
 @tailrec def loop(r: Gen.R[T], i: Int): Gen.R[T] =
 if (r.retrieve.isDefined) r
 else if (i > 0) loop(doApply(p, r.seed), i - 1)
 else throw new Gen.RetrievalError()
 loop(doApply(p, seed), retries)
}

Worst-case: we have to fail (or throw). ☂
Philly ETE 2017 84

recommendations

Since filter leads to the most annoying ScalaCheck error
(probably), and also breaks function generation4:

— Use existing combinators, e.g. Gen.choose(1, x)
— Avoid filter when possible.
— If necessary, considering mapping to valid values.
— Minimize the % of discarded values.

4 It also makes collection generators much more likely to fail.

Philly ETE 2017 85

conclusions

Philly ETE 2017 86

what we saw

1. Generators aren't that complicated (in theory)
2. (Including function generators!)
3. Determinism is important
4. Pure functional programming can make things easier
5. You could roll your own property-based tests

Philly ETE 2017 87

what we heard

1. Writing properties is just writing tests, abstracted
2. Try to maximize the coverage/energy ratio
3. Pay attention to generator distribution and range
4. Avoid filter when possible
5. Don't be afraid to build custom generators ✂

Philly ETE 2017 88

what we did not cover

1. Shrinking (in any form)
2. Cases where we can be exhaustive
3. Managing recursive generation depth
4. "Approximate" laws (as seen in Algebird)
5. Type-level combinators (e.g. scalacheck-shapeless)
6. Detailed ScalaCheck walkthrough

Philly ETE 2017 89

special thanks

ScalaCheck would not exist without Rickard Nilsson.

ScalaCheck would not have working function
generators without the assistance of Kenji Yoshida.

ScalaCheck could not progress without the time
and energy of its users and contributors.

☀ Thank You! ☀

Philly ETE 2017 90

the end
Questions?

Philly ETE 2017 91

